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Shift operators for discrete representations of O( p,q) are found in product form. Their
normalization is found and conditions are derived for the weight components of such

representations.

INTRODUCTION

Various noncompact orthogonal groups have arisen in
the study of physical problems, such as the De Sitter group,
conformal group, etc. The unitary representations of such
groups are all infinite dimensional, and no general theory for
them exists. The case of O(#,1) has been considered by
Schwarz,! Wong,? and others, using an approach based on
the properties of the O(n) subgroup. The idea of shift opera-
tors for the orthogonal groups was introduced by Pang and
Hecht’ and further developed by Wong* and Bincer.’ In this
paper I extend Bincer’s approach to the noncompact otho-
gonal groups with discrete representations.

1. DEFINITIONS AND NOTATION

My notation is essentially that of Bincer,? and the read-
er is referred to this paper for more complete discussion of
the definitions used here.

Discrete series representations of O( p,q) can occur only
if either p or ¢ is even. Since O( p,g) is isomorphic to (g,p),
there is no loss of generality in assuming p is always even.
There are then two cases:

A. peven, g odd. Then O( p,q) is generated by operators
Gy, v<a,b<v,wherev=4§{p+qg—1),v= — v

B. p even, g even. O( p,g) is generated by operators G §,
v<a,b<v, a,b #0, where v = 1(p + ¢).

For the noncompact algebras the indices are divided into
two blocks, symmetric under i— — i, as follows:

Block One {i|1<]i|<p/2}

Block Two  {0}u{ilp/2 + 1<[i|<v]. a1.n
Notice that the index 0 is present in the second block only if
the algebra is odd-dimensional.

The generators are defined by the commutation
relations

[G:.Gs]=6;Gi—65G5 + 685G -8G5 (1.2)
and have the property

G:= —G:&. 1.3)
For a unitary representation the generators must also satisfy
G’ if a and b are in the same block

G35 = {_G,,

if @ and b are in different blocks.
(1.9

Equations (1.3) and (1.4) impose the requirement that the

blocks of indices be symmetric, and therefore preclude the
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use of this approach for O( p,q) where both p and ¢ are odd.

The operators G2, a = 1.--vall commute with each oth-
er and may all be taken to be diagonal. Their eigenstates will
be used as the basis for the representation, and their eigenval-
ues are called the components of the weight of the state,

(1.5)

For the compact algebra O(n), a representation is specified
completely by the values of the Casimir operators, which are
functions of the w’s. A given representation will have both a
lowest weight state and a highest weight state, and the entire
representation may be constructed by the appropriate appli-
cation of shift operators, starting from either state. For the
noncompact algebra O( p,q) the values of the Casimir opera-
tors do not uniquely specify the represenation, and the repre-
sentations obtained from the highest and lowest weight
states corresponding to the same Casimir values are inequi-
valent. I shall therefore have to treat these two cases sepa-
rately. For representations with a highest weight I introduce
the ordering

G?I lwlw2".wv> =u, lwl‘“wv>'

w, 2w, i=lw—1 1.6)
For representations with a lowest weight state the ordering is
W, ., <W; i=l-v—1 (1.7

Here and elsewhere a tilde indicates a lowest weight state.
With this ordering I have in both cases that G is a

raising a>b
weight operator, if {a=25.
lowering a<b

An O( p,q) one tensor-operator V', is defined by the
commutation relations

[Ge,V,]= -8V, +85V,. 1.8)
raising d<0

A one-tensor is a {weight operator if, {d = 0.
lowering d>0

2. SUBGROUP CHAINS

The complete labelling of the states in a representation
requires more than the specification of the state of highest or
lowest weight. One labelling scheme is to specify the weight
components for the states of highest or lowest weight of all
the subgroups in a given subgroup chain, a technique intro-
duced by Gel’fand and Tsetlin.® The chain of subgroups I
shall consider is
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O(p.9)D0(p,g —1)D0(p,g ~2))D

«20(p,1)D0(p)D--D0(2). 2.1DH
The generators of the subgroups are defined by Eqs. (1.2)—
(1.4) as before, except that the range of the indices is restrict-

ed. If / is the rank of a noncompact subgroup, the range of
indices is given by

! odd lile{0]Ju{l-p/2}U{p/2 +1+v —( —1)/2,v]}
2.2)
Feven lilefl-p/2}Uip/2 +1+v —1/2,v]. 23

Notice that passing down the subgroup chain from an odd
rank subgroup to an even rank one simply involves deleting
zero from the range of the indices. Passing from an even rank
subgroup to an odd rank one requires the range of the indices
to change from
lile{1-p/2}U{8,V}

S=p/2+1+v—1/2 (24

to

ile{0}u{1-p/2}Uf8 + 1,v]. Q.5)

Here both the values + & have been deleted, and zero has
been added. A suitable definition for those operators involv-
ing the new index is

G2 +G? . Vs + Vs
Ge= ——=2,G=G5+GY),V, = >——.
V2 V2
(2.6)

Eventually, as one proceeds down the subgroup chain, there
will remain only compact subgroups. These may be treated
using the results of Bincer,’ with a slight modification. For
the noncompact subgroups, the weight components of each
subgroups label a state of highest (or lowest) weight. For the
compact subgroups these labels are for the state of lowest (or
highest) weight, resulting in an inversion of the ordering of
the weight components. To apply Bincer’s results I must
define a new index by

a=p/2—a+1, 0=0. 2.7)

Bincer’s results can then be used with the primed indi-
ces, and the range of the indices for compact subgroups is
given by

I odd|i|e{0}u{1...( —1)/2}

or
|#|e{0}uf p/2 — 1 —1/2 +1,..p/2] .8)
{ evenlile{1...1/2}
or
Ple{ p/2 —1/2 +1,..p/2}. 2.9)

As an example, a statein a representation of O(4,5) with
a highest weight state would be specified by a state vector
with labels m! representing the ith weight component of the
rank / subgroup as
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ms m m3 mj\ highest state of O(4,5)
m? ms mi mj\ highest state of O(4,4)
m! m] m; \ highest state of O(4,3)
mé mS m§ \highest state of O(4,2)
m3 m; highest state of O(4,1)
mi(mi) mi(m}) lowest state of O(4)
m3(ml.) lowest state of O(3)
mi(m3.) lowest state of O(2)

(2.10)
3. SHIFT OPERATORS

All the states in a discrete representation may be gener-
ated from a single state by the repeated application of appro-
priate shift operators. The action of such an operator on a
state is given by

m1i>+q m7+tl
! . .
S, a , REE))
m! m
i—1 I—1
m; m~ =8, +6;

The operator 'S, changes the || component of the weight of
the rank / — 1 subgroup by one unit up or down, depending
on the sign of u.

For those representations with a highest weight state, I
may simply adopt the results of Bincer,* since these depend
only on the commutation relations (1.2) and the definition
(3.1). In that case I have

’SH =V(1), (3.2)
V(.= V& TG ¢ M) (3.3)
V@), =G° [ odd (3.9)

=L_.(Gg —G?) I even.
V2
The prime on the product indicates that the range of the

index j is that of the subgroup with rank / — 1. The constants
I—1

¢; ' are determined by the condition
—1
G =m S8 35)
b=7¥
and are given by
ma4v+j—QRv—I14+2)0. |jl>p/2
lodd ¢ = [ , @ > (3.6)
mi+(—-1/2+j— 6, [j|<p/2
;M rv - @v—142)6, |jl>p2
[even ¢ =) | . ,
m) +1/2+j— 26, [/1<p/2
3.7

For the representations which have a lowest weight
state one may follow the same iterative procedure used for
the case above, except that it must be based on the annihila-
tion of the lowest state by all lowering operators. The results
in this case are
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'S, =V, 3-8
Vi, =V J] G- ") (3.9
j=p+1
V(v), —{G" ! odd
————(G‘s —G?%) I even. (3.10)
V2 2
The constants ¢; "' are given by
Al v —j—Qv—1+2)68; |jl>p/2
I odd 5;={"fj A
o+ (—1)/2—j—6; |jl<p/2
3.1
; -,_[rﬁ§+v—j—(2v-i+2)6,- |jl>p/2
VG Al 12— j— 26 ljl<p/2”
(3.12)
From the definitions (3.4) and (3.10) and Eq. (1.4) I see
—V®#); I<lal<p/2
+ =(-1) 3.13
Vi@ == [V(fl)a a=0 or |a|>p/2 @13
- -V, 1<|a|<p/2
* =(=D"{~ 3.14
V@, =(=1 [V(v)‘7 a=0 or |a|>p/2. G149

4. NORMALIZATION OF THE SHIFT OPERATORS

The shift operators found in Sec. 3 are defined only up
to a normalization factor. The evaluation of this factor is
crucial in determining the states in a representation and will
impose certain “betweeness” conditions on the m’.

The normalization coefficient for the shift operator ’Sy
is defined by

m§7+q
i .
S,
m;
mi~!
I3
ml=1 me+9
- : . @1
m;
l—l i—1
-8, +6; mi~' =8, +5;

The evaluatlon of these coefficients is lengthy and fol-
lows very closely the procedure used by Bincer in Ref. 7,
modified to include the different range of indices and the
altered hermeticity propertiesof ¥ (¥) or V(V) inthe noncom-
pact algebras. The resulting expressions for the coefficients
for representations with a highest weight state are:

lodd, I>p

l(m -8, +6,ﬁ)
']

2

2319 J. Math. Phys., Vol. 21, No. 9, September 1980

I<iu|<p/2
for[ 4.2)
| >p/2
leven,I>p, 0<a<p/2
2
‘(m’ ‘—6,,,+6,,,)
C——c"'+l)(c —1/2+4+2+ mj)
X (e5™! —l/2+2—mé)—4(c{;'-1/2+2)2;
@72 1
X (c"‘—c§+1) IM "' —c+2)
=¥ j=pr2
s /2 v
X[ —¢) I ' —c+D
i=1 j=p/2+1
x I €' —dh
j_=&+l
XTL' =" =67 +1+84)" @3
ji=¥
leven, I>p,u>p/2
2
I(vn‘ -8, +6)
(cs—C— —p/2 —1)ch — e~ —p/2)
223 1
X h ' =g X J[ "~ +2)
j=p72
x et =e) T ‘i—d+n
i=1 Jj=@/2)+1
f[ l 1 c(_l)
7
Xf[ 44)

- f fl4 5}#

In Eq. (4.2) the double prime on the first product indicates
the range is that of the rank / group. For I/<p, the coefficients
are those given by Bincer with the substitution /—’, as de-
fined in Eq. (2.6). The requirement that the above expres-
sions be nonnegative yields the following conditions on the
mt:

I>p mi>m'='>m;_, 4.5)
m=>v—(—1)/2—p+1 p>p/2, [ odd (4.6)
m, <t —p p<p/2, {odd (4.7)
m, >v—1/2—p+2+ |ms| p>pr2, 1 even

i=¥ C—

(4.8)
m, < —1—p—|ms| u<p/2, ! even (4.9)
ISp mi<m!™'<m|, <O0. (4.10)

It is possible for a label to be outside the range indicated
aboveifit is equal to the next smaller label. The value of such
a weight component cannot be shifted, however, and repre-
sentations including such labels are called degenerate repre-
sentations, as discussed by Nikolov.® The most degenerate
case, where all the labels are initially equal, has been consid-
ered by Niederle.®

The results for representations with a lowest weight
state are the same as the above, with ¢, replaced by ¢; in Eqs.
4. 2)—(4 4) the limits on the products sent to their negatives
(17 ;—II7_ ), and — p/2—p/2 in Eq. (4.4). The condi-
tions (4.5)—(4.10) also apply, with m replaced by — 7.
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5. CONCLUSION

For odd-dimensional algebras there are two inequiva-
lent representations with the same value of the quadratic
Casimir operators, one with a lowest weight state and ene
with a highest weight state. For even-dimensional algebras,
there is another possibility. There are two choices of sub-
group chains unless p = g, because O( p,g) is isormorphic to
O(q,p). Thus in general there will be four inequivalent repre-
sentations of O( p,q) for p,q even and p#g4.

Comparison of my results with those of Schwarz for the
case O( p,1) shows our results to be in agreement if the indi-
ces are switched as in Eq. (2.6). The results of Wong for
O( p,1) seem to include othere discrete representations than
the ones I have found. However, further analysis of his re-
sults’® shows that the only allowed value of S in Egs. (17) and
(18) of Ref. 2 is S = K, and with this restriction our results
are in agreement.

Nikolov®!! has given conditions, without proof, on the
weight components for discrete series representations of
O( p,q). For the case of a representation with a lowest weight
state our results are in agrement, with the following relabel-
ing of weight components:
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Nikolov Murphy
AR j<p
my >\ +p+1—j jmp, i<p/2. (5.1)
-, e, i>p/2

Nikolov does not consider representations with a highest
weight state.
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A simple combinatorial method for writing the character generator of SU(n) is described.

1. INTRODUCTION

Generating functions have proved to be a useful tool in
the representation theory of continuous and discrete
groups.! In the case of a compact semisimple Lie group G,
the character generator is the starting point for obtaining
many other generating functions of interest. The character
generator for irreducible representations of a connected sim-
ply-connected semisimple Lie group G is defined by

X @) =Sx.(@d 4],

where / is the rank of G, the summation extends over all
nonnegative integers r,,...,7;, and y, () is the character of
the finite irreducible representation of G with highest weight
A=rA,+ -+ rA, Herei,,.. A, are the fundamental
weights of G. Thus the coefficient of 4 .4 ;' X a¥' -}’
(which we abbreviate as 4 "a”) in X , (@) is the multiplicity of
the weight ¢ = (u,,...,4¢;) (Written with respect to some basis
for the weight space). It follows easily from Weyl’s character
formula that X, () is a rational function of 4 and a. For
many applications it is desirable to write X, () as a sum of
terms of the form

d
Aa”, H(l —Aa,a, ), )
i=1

wherej, h,and /,,1,,...,, depend on i, and where d is the same
for all terms and is necessarily equal to 4 (dim G + rank G).
The method' used for computing X, (a) does not directly
yield a sum of terms of the form (1), and it is unknown in
general whether X, (@) can always be written in this form.
We will describe a different method for computing X, (@)
when G = SU(n), which automatically expresses X , («) as a
sum of terms (1). Each term can be read off by inspection
from a certain type of tableau, and we state a formula for the
total number of terms. Our derivation will be purely combin-
atorial, based on the well-known description of the charac-
ters of SU(n) in terms of Young tableaux.

2. BASIC CONCEPTS AND FUNDAMENTAL THEOREMS

We now introduce the necessary combinatorial con-
cepts and terminology. Fix integers m, > m, > -->m, >0,
and set m = (m,,...,m;). Let r = (r,,...,r, ) be a k—tuple of
nonnegative integers, and let ¥, be the Young diagram with
r; columns of length /. Thus Y, is a left-justified array of
squares, with 7, + 7, , + - + 7, squares in row /. Let p be
an array obtained by inserting positive integers into the
squares of Y, subject to the rules: (i) Every row is non-in-

“Partially supported by NSF Grant MCS 78-02743.
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creasing, (ii) every column is strictly decreasing, and (iii) no
entry in row i exceeds m;. For instance, if m = (5,4,2) and
r = (4,2,3), then a typical p looks like

554443111
33222
211

We call p a column-strict plane partition® of type (m,r). Intro-
duce new variables X, .X,,..., and set

M(p)=X"X2..,

where a; parts of p are equal to i. Thus, for the above exam-
ple, M(p) =XiX3X3X}X? Ingeneral,a, =0ifi>m,,
and X g, = 3 ir;. Given m = (m,,...,m, ), define the generat-
ing function

F,(4X)=Y4"M(p), @

where the sum is over all column-strict plane partitions p of
type (m,r) for some r = (r,,...,7, ). We will give a method for
computing F,, (4,X) as a sum of terms of the form

AX™ H1(1 —A;X, X)), 3)
where j and /,,...,/; depend on i, and where m = m,

+ <« + m,. From this it will be easy to obtain the character
generator for SU(n).

We now define the type of tableaux necessary to de-
scribe the terms (3) of F,,(4,X). A shifted Young diagram
Z,, of shape m = (m,,...,m, ) consists of an array of
m = m, + - 4+ m, squares, with m, squares in row i, and
with row / 41 indented one space to the right from row i. A
standard shifted Young tableau (SSYT) of shape m is ob-
tained by inserting the integers 1,2,...,m into the squares of
Z,, without repetition such that every row and column is
increasing.? For instance, an example of an SSYT of shape
(7,4,3,2) is given by

123 5 91416
46 710
81113
12 15.

If ris an SSYT, define the sub-SSYT 7 to be the SSYT
obtained from 7 by deleting all entries > i. For instance, if 7
is given by (4), then 7'’ = 77, 73 = 123, and

@

1 2 35
= 4 6 7
8.
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If wisan SSYT of shape m = (#,,...,m, ), define a monomial
I'(my=A4.X, X, ~X,, . Forinstance, if 7 is given by (4),
thenI" (7) = A XL, X Xoand I (7'Y) = 4, X, X, X,. Wenow
state the fundamental theorem which explains how a formu-
la for F,, (4,X) can be read off from the set of all SSYT of
shape m.

Theorem: (i) We have

Fo(4.X)= Z.Hr(ﬂmy 11— e, )

7 €K, i=1
where 77 ranges over all SSYT of shape m, and X is the set of
those / for which i -1 appears in 7 in a row above /.

(ii) To obtain the character generator for SU(n) in the
form (1), with respect to the basis 4 ,...,4, _, of fundamental
weights, takem = (n,n — 1,...,2) in (S)and set X, = o~ a,
for [i<n (where we set a, = a,, = 1). (If one prefers the
characters with respect to a different basis for the weight
space, replace each a, by an appropriate a|"--a,"_}*.) More
generally, if 4,,...,4, _ are the fundamental weights of
SU(n) in their usual order, then to get the generating func-
tion for those characters of SU(n) corresponding to a highest
weight r A, + - + r, A, for some fixed k<n —1, take
m=(n—l,.,n—k +1)and X, =a,” a;, 1<i<an.

(iii) The number g™ of terms in the sum (5) (equivalent-
ly, the number of SSYT of shape m) is given by

m! m, —m,

= —— [ —=.

mbem, e mp+my
where m = (m,,...,m, ). In particular,
("5 D24l (n — 2)t
o ] (4D n +3)(2n—1)
214l (n — D
n¥(n 4+ 2)--(2n — D

, n even

, nodd.

3. PROOF OF FUNDAMENTAL THEOREM
(i) The right-hand side of (5) may be rewritten as

z Z r(’rr”’j"...]‘(ﬁ("-))bu.’ ©

7T Dyyeens

where b,...,b,, ranges aver all sequences of nonnegative inte-
gers such that b, >0 if icK . To each term I (7 'Y
(7)Y’ of (6), associate a column-strict plane partition g
by defining p to have b; columns with entries /, > --> I,
where 7*? has shape (/},...,/)). If p is of type (m,r) then
@y ---I"(ar(,,,,)b"' is just the monomial 4 "M ( p) appear-
ing in (2). Hence to prove (i), we need to show that the map
(m,b)—p defined above between (a) ordered pairs (7,b)
where 7is a SSYT of shape m and b is a sequence of nonnega-
tive integers b,...,b,, such that b, >0if icK_, and (b} col-
umin-strict plane partitions g of type (m,r) for somer, is a
one-to-one correspondence.

Given (m,b) definea; = b, + b, ., + -+ b,,. Thus
a»~>a, »0,andq, >a,,, ifick,. Clearly we can recover
b froma = (a,,...,.,a,, )by b, = a, — a, . ,. Now let o be the
array obtained by replacing i in 7 by a,. Then o is a shifted
plane partition® of shape m, i.e., an array obtained by insert-
ing nonnegative integers into the squares of Z, so that every
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row and column is nonincreasing.

We can recover p from o by defining the /th column of p
to be the shape of the shifted plane partition consisting of all
entries of o which are >/. Hence we need to show that the
map (7,a)—0 just defined between (a) ordered pairs (7,8)
where 7is 2 SSYT of shape m and a is a sequence g, >->4,,
>0 of integers such that g, > a, , , if ieX,, and (b) shifted
plane partitions o of shape m, is a one-to-one correspon-
dence. This will follow from a general result about partially
ordered sets which we now describe.

Let P be any finite partially ordered set (poset) with m
elements, and let @:P—{1,2,...,m} be a fixed order-preserv-
ing bijection (so x<y in P implies o(x)<w(¥)). Let .Z(P) be
the set of all order-preserving bijections m:P—{1,2,...,m}. If
we.L(P), let S denote the set of all integer sequences
a;>>a,>0suchthata; >a, , fwr ' (>wr (i +1).
Finally, let . (P) consist of all order-reversing maps
o0:P—{0,1,2,..] [i.e., x<p in P implies o(x)>o(y)). Accord-
ing to Ref. 4 or Theorem 6.2 of Ref. 5, we have:

Lemma: Define a map & (7,a) = o between ordered
pairs (7,a) where 7€.¥ (P) and a€S,, and the set .«¢'(P), by
the rule o(x) = a_ Then @ is a one-to-one
correspondence.

We may regard the shifted Young diagram Z_, as a po-
set, with the elements (squares) increasing as we read left-to-
right or top-to-bottom. Choose @:Z,—{1,2,...m} to in-
crease by unit amounts along each row. E.g., form = (5,3,1),
@ is given by

e

1 2 3 4 5
6 7 8
S.

It is clear that a map o /(Z,, ) is nothing more than a shift-
ed plane partition of shape m, and that an order-preserving
bijection 7€.%°(Z,,) is just an SSYT. It follows from the
lemma and our choice of » that we have exactly the one-to-
one correspondence (7,a)—0o needed to complete the proof
of (i).

(ii) This follows immediately from (i) and the well-
known description of the irreducible representations of
SU(n) in terms of Young tableaux.

(iii) The number g™ of SSYT of shape m has been calcu-
lated implicitly by Schur,” and more explicitly in Refs. 3 and
8.

4. EXAMPLES

We will use the Fundamental Theorem to compute the
character generators of SU(3) and SU(4). These two cases
are at least implicit in Ref. 6.

For the case of SU(3), there are two SSYT = of shape
(3,2). For each of these 7, we need to compute (by inspec-
tion) the shape (/,...,{;) of each of the five sub-SSYT
#V,...,m% and hence obtain the monomial I" (7”)

= A4, X, ~X,. We also compute by inspection the set K, ofi
in 7 such that i +1 appears in a higher row than i. Then 7
will contribute a term IL,, I (7?)/II7L  [1 — I ()] to
F,(4,X). Substituting X, = a,, X, = a; 'a,, Xy =a; '
yields the character generator X, (a). The table below gives
the relevant information for each SSYT #.
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1 2 3
= K =
L 7 s 5 K ¢
i 1 2 3 4 5
123 123
a9 1 12 123 4 45
@) 4.X, 4.X, A4.X; A X\ X; A,X:X;
5 _ 1 2 4 K, = {3}
T= 3 5 807
i 1 2 3 4 5
12 124 124
i 1 12 3 3 35
@) 4.X, A.X, AX\ X, AX X, A,X,X5
Hence
1
F(3,2)(A»X) =

(1 —4,X)(1 —A4,X)X1 — 4,X:)(1 — 4,X,X)(1 — 4,X,X;)
N A XX, _
(1 —4,X)(1 — 4,X)(1 — AX,X)(1 — AX X1 — 4,X,X5)
Thus the character generator for SU(3) is given by:
1
(A—-ad4)l—a 'ad)1—a, 'A)1 —aa, '4,)(1 —a, '4,)
+ a4, )
(1 - 4)(1 —a, o )1 —ad)(1 —aa, '4)(1 —a;, 7 '4y)

X ()=

For the case of SU(4), there are 12 SSYT of shape (4, 3, 2). For each one we list the set K, and the shapes (/},...,/;) of each

7, 50 I (77) = 4, X, X,

1 2 3 4
) 7= 5 6 71 K,=¢
8 9
i 1 2 3 4 5 6 7 8 9
Ly d 1 2 3 4 4,1 4,2 4,3 4,3,1 4,32
1 2 3 4
2 7= 5 6 8 K _={7}
79
i 1 2 3 4 5 6 7 8 9
Lyol, 1 2 3 4 4,1 4,2 4,2,1 43,1 4,32
1 2 3 5
B 7= 4 6 71 K, =1{4}
8 9
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i 1 2 3 4 5 6 7 8 9
Lyl 1 2 3 3,1 4,1 4,2 4,3 4,3,1 43,2
1 2 3 5
@ 7= 4 6 8 K, ={47)
7 9
i 1 2 3 4 5 6 7 8 9
lpl; 1 2 3 3,1 4,1 4,2 4,2,1 4,3,1 43,2
1 2 3 6
G) 7= 4 5 7 K,={5}
8 9
i 1 2 3 4 5 6 7 8 9
Lo, 1 2 3 3,1 3,2 4,2 4,3 4,3,1 4,3,2
1 2 3 6
6 7= 4 5 8 K, ={57)
9
i 1 2 3 4 5 6 7 8 9
Lyod, 1 2 3 3,1 3,2 4,2 42,1 4,3,1 4,32
1 2
N 7= 4 5 8 K, =|{6]
i 1 2 3 4 5 6 7 8 9
Lyod, 1 2 3 3,1 3,2 3,2,1 42,1 4,3,1 4,32
1 2 45
® 7= 3 6 7 K,={3}
8 9
i 1 2 3 4 5 6 7 8 9
Lol 1 2 2,1 3,1 4,1 4,2 4,3 4,3,1 4,3,2
1 2 4 5
9 7= 3 6 8 K,={37}
7 9
i 1 2 3 4 5 6 7 8 9
3 1 2 2,1 3,1 4,1 4,2 4,2,1 4,3,1 4,3,2
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(1) 7= 3 5 7 K,=1{35]
8 9
i 1 2 3 4 5 6 7 8 9
Lyeod, 1 2 2,1 3,1 3,2 4,2 4,3 43,1 43,2
1 2 4
(1) == 3 5 8 K,=1{357}
7
i 1 2 3 4 5 6 7 8 9
Ipeod, 1 2 2,1 3,1 3,2 4,2 42,1 4,3,1 43,2
1 2
(12) 7= 3 5 8 K,=1{3,6}
6
i 1 2 3 4 5 6 7 8 9
Leod, 1 2 2,1 3,1 3,2 32,1 42,1 43,1 4,3,2

Thus we obtain the following expression for the character generator X, (a) of SU(4):

(A —ad)(1 —a; ' 'ad4))(1 —aa; '4:)(1 — a7 '4)X,(a)

1
- (1 -a;'aAd)(1 —a; '4)(1 — a7 ' )1 — e 'ae; '4,)(1 —a; '4)

" a,a; ',

(I —a;lad)(1 —a; '4)(1 —aya; '4)(1 — ai 'aye;s '4)(1 — ey '45)
+ aa; 'a,

(1 —a; 'a4)(1 —aa; 'asd )1 — a5 '4)(1 —a 'aay A1 — ;7 '4y)
+ a, 4,4,

(1 —a; 'ad X1 — aya; 'asA)(1 — aa; 'AX1 — e 'aya; ' 4,1 — axa; ' 4,)
4 ai 'a, v

(1 —a; "ayd )1 — @105 'asdy)(1 — a7 'a o) — a7 'aya ' 4,)(1 — a; ' 4))
4 a; 'adA,

(1 —a; 'asd X1 — aya; ' asd )1 — a7 'asd )1 — a7 layes ' A)(1 — aya;'dy)
+ asAs

(1 —a; 'ad X1 — aa; 'asd)(1 — a7 ' asd )1 — aads)(1 — a,a;'45)
+ a4,

(1 — a4)(1 —aja; 'ayd))(1 — a,a; ' 4,)(1 — a 'aa; '4,)(1 —a; '4,)
+ aja; 'AA,

(1 — a1 — aya; ') (1 — aja;7 ' 4,)(1 — a7 'y ' 4,)(1 — ayas ' As)

ai 'a,ad ]

M (1 —a)(1 — a5 'asd )1 — a7 'ayd, )1 — a 'a,a; '4,)(1 — a; '4y)
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a; 'a3434,

+
(1 — ad)(1 — aa; 'ayd,)(1 — a7 'asd)(1 — a7 'ayas ' 4)(1 — ayas ' As)

34,4,

+ .
(1 —ad)(1 —aya; 'asd X1 — a ' A )(1 — asd (1 — aya; '4y)
There seems little point in writing down the character generator of SU(5), which by part (iii) of the theorem has 286
terms. Even more impractical is the character generator of SU(6), with 33592 terms.

5. CONCLUSIONS

The generating function F,, (4,X ) has some additional
properties of interest. If m = (n,n —1,...,2) then write F,,
A4X)=F,(4,X). If weseteachA, = lin F,(4,X), then it
follows, e.g., from Eq. (11.9;6) of Ref. 9 or Corollary 8.3 of
Ref. 2 that

F,(1,1,.,1,X)
=(-xx-x) [IA-X) T a-xx),
i= I<i<cj<n
IfweseteachX, =1land A4, =A4in F,, (4,X), thenit
follows from (5) that the coefficient of 4 7 in
F,(4,...4,1,...,.1) is a polynomial function P, (g) of ¢ of de-
gree m —1 and leading coefficient g"/(m — 1)l When
m = (n,n —1,....,n — k +1), this polynomial P, , (q) is given
by

P, (@)= ddim(@A, + - +a,A;), )

where the sum is over all k-tuples of nonnegative integers
(ay,...,a; ) such that a, + - + @, = g, and where dim A de-
notes the dimension of the irreducible representation of
SU(n) with highest weight A. When & = n —1, the sum (7)
can be explicitly evaluated using a result of Andrews'® and
independently Macdonald'' (pp. 50-52). Namely,

AZIL[ G+n+2i—2)4,,

i=0 (n+20) 44,

A2 L@+n+2i—3),_,
=1 (m+2i—1)4_,

where (r), = (r —1)(r =2)-(r — s +1), and where 4 * is

the second-difference operator, defined by 4 Q (¢)

= Q(q +2) —2Q(q +1) + Q(g). Alternatively, we have

P,,_.(g) =4?%dim((g —2)4,), where 4, is the highest

weight of the spin representation of the Lie algebra

so(2n +1,C). A theoretical explanation of this fact can be

given by considering the decomposition of g/ (n,C)

Cso(2n +1,C) in the representation (g —2)A4,,. We will not

enter into the details here.

We have described a method for writing F,,(4,X) asa
sum of g™ terms of the form (3). One may wonder whether
there is some alternative way to write F,,(4,X ) as a sum of
fewer terms of the form (3). If we have any such representa-
tion of F,,(4,X ) then setting 4, = 4 and X, = 1as above, we
obtain

Fo(4,..4,1,.,1) =

, if n=21+1

P,. .(@=
, if n=2I

A"
,Z(I—A)'"
349
(1—ay’

2326 J. Math. Phys., Vol. 21, No. 9, September 1980

for certain integers #; >0. Hence the integers ; are uniquely
determined by F,, (4,X ), not by the way in which F, (4,X ) is
written as a sum of terms (3). In particular, the number of
terms is always the same, namely, g™.

Let us mentions that the numbers g™ were shown by
Schur® to be the degrees of the irreducible projective repre-
sentations of the symmetric group S,,. We don’t know if this
connection between SU(n) and §,,, is just a coincidence.

It is natural to ask whether our results for SU(n) can be
extended to other simple Lie groups, in particular O(n) and
Sp(2n). We have been unable to write the character gener-
ator for these groups in the form (1) because of the lack of a
combinatorial description of the characters which would al-
low the use of the lemma on posets. Though there exist com-
binatorial descriptions of the characters of these groups (e.g.,
Ref. 9, p. 240, and Ref. 12), they seem unsuitable for the
implementaion of the Lemma.
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In this paper we generalize Dragt’s approach to classifying three-particle states. Using his
formalism of creation and annihilation operators, we obtain explicitly a complete set of
orthonormal functions ¥ *#RL, on S;. This set of functions carries all the irreducible
representations of the group SU(3) reduced according to SO(3). The Y *#RL, | which are
eigenvectors of the togetherness and angular momentum operators, have very simple properties
under three-particle permutations. We obtain also explicitly the coefficients “3+” which reduce

the products of these functions.

INTRODUCTION

In the study of three-body decays,!-? and in any problem
with three equal particles, it is useful to employ a complete
set of orthonormal states which treat all the particles on the
same footing and have definite angular momentum and lo-
calization. In this paper we obtain explicitly a set of states
with these properties. Following two papers of Dragt® we
prove in Sec. 1 that the three-particle states can be classified
according to the group SU(3), and this classification leads to
states with the announced properties. In Sec. 2 we generalize
Dragt’s formalism of creation and annihilation operators
and obtain the general expression for such states. Their sym-
metry properties are given in Sec. 3. In Sec. 4 we reduce their
products by means of ““3v” coeflicients, whose general ex-
pression is also given explicitly.

1. CLASSIFICATION OF THREE-PARTICLE STATES

This section and a part of the following are already pre-
sented in Dragt’s papers,’ but we review them in order to
make the paper self-contained.

We shall assume three spinless, nonrelativistic and non-
interacting particles of mass m. If we fix the total energy and
momentum, T"and Q, to classify three-particle states means
in the momentum representation to obtain a complete set of
functions on the phase space.

A. Phase space

The phase space of a such system is S, the five-dimen-
sional surface of a sphere in a six-dimensional space. If p,,
Pr, Pc are the particle 3-momenta, energy and momentum
conservation imply

Y pi=2mT, (1a)
x=A,B,C
P, =0Q (1b)
x = A,B.C

These equations can also be written

“Work partially supported by the Instituto de Estudios Nucleares
(Madrid).

PPresent address: Department of Theoretical Physics, 1 Keble Road, Ox-
ford OX1 3NP, England.
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@ +q*=2mT— Q%/3, (2a)

V3¢ =Q, (2b)
where

a=(ps —p)V2,

a0 =@2pc —p, —ps)/V6, ®

Q" =(pa +05 +0)/V3.
Thus, the phase space is the set of configurations (q,q") which
satisfy Eq. (2a). It must be noted that if we define

|z) = (' +iQ)/@mT — Q*/3)"", ®
the phase space is the set of vectors of a three dimensional
Hilbert space H which satisfy

(z]z) =1 ®
(i.e., Ss).

B. Classification of three-particle states according to
SU(3)

On the real space (q,q’) let us consider the set of linear
transformations

R= [ _; f ] , (62)
where a, B are 3 X 3 matrices verifying

aa” +BBT =1,

afB T — Ba’=0. (6b)

On H the corresponding set of transformations,
U=a+ 1B,
constitutes the unitary group U(3). Its subgroup SU(3) acts .
on the three-dimensional Hilbert space and leaves (z|z)
fixed. Hence, S; is topologically equivalent to the cosets of
SU(3) with respect to SU(2), the little group of an arbitrary
but fixed point of Ss. For instance, if
1
la) =|O],
0
its little groupis [ 3 3y, Jand Ula) = |2) withz, = U, is
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any unit vector (i.e., matrices U of the same coset have iden-
tical first column).

Let E be the Hilbert space of square-integrable func-
tions, £, on Ss. SU(3) acts on E according to the rule

Dy(f)= foU ', YUeSUQ), feE. )

Thus, E is a representation space of SU(3). Using the notion
of induced representation,® we can see this representation of
SU(3) on E as induced by the trivial one of a subgroup SU(2).
Therefore, the Frobenius reciprocity theorem® can be ap-
plied, assuring in this case that the representation of SU(3)
on E carries any irreducible representation I of SU(3) the
same number of times that I” when restricted to SU(2) con-
tains its trivial representation. As each irreducible represen-
tation of SU(3) contains once and only once the trivial repre-
sentation of SU(2),® any irreducible representation of SU(3)
occurs once and only once in the representation of SU(3) on
E. This implies that it can be found a basis of E labelled only
by SU(3) labels. In fact, we should prove the completeness of
the functions classified according to SU(3). This follows
from the Peter~Weyl theorem.” For SU(3) it assures that the
set of matrix elements of all its irreducible representations is
complete in the Hilbert space of square-integrable functions
on the manifold of the group. Then, the subset of matrix
elements obtained when one of the states fixing the matrix
element runs over the corresponding singlets of SU(2) is
complete in E.

C. Advantages of such classification

We have proved that three-particle states can be classi-
fied according to SU(3), i.e., two Casimir operators of SU(3)
which fix the irreducible representation and three operators
of the algebra or enveloping algebra which specify the corre-
sponding basis vectors constitute a complete set of observa-
bles. This classification has three important advantages, it is
“democratic” and the “togetherness” operator® and the to-
tal angular momentum can be used as elements of a complete
set of commuting observables. '

This classification is “democratic” because none of the
observables needed to constitute a complete set of commut-
ing observables discriminates among the three particles, i.e.,
all of them commute with the elements of the alternate sub-
group 4 (3) of the permutation group of the three particles
S (3). Therefore, the corresponding basis vectors will trans-

form under the three-particle permutations in a very simple
]

way. It is trivial to verify that
[Capcs R 1=0, (8a)

where C, ;. is the cyclic permutation, generating 4 (3),

(8b)

o= i 5 V]

and R is a linear transformation on (q,q’) of the type (6a). As
the elements of SU(3) are of this type, the observables ob-
tained from them commute with C, ., and therefore, they
do not discriminate among the three particles.

The “togetherness” operator A 2 measures the localiza-
tion of the three particles, in a similar way as the angular
momentum does it for a two-particle system. The main dif-
ference is that for interacting systems the togetherness oper-
ator does not corresponds to a conserved quantity. But, its
use to classify three particle states is interesting because its
eigenvalues can be bounded in some cases.” In the next sec-
tion we shall see that the togetherness operator can be used
as a Casimir operator of SU(3). We shall also prove that the
group of rotations about a center-of-momentum frameis a
subgroup SO(3) of SU(3). Thus, the total angular momen-
tum J 2 and its third component J; can be two of the three
operators needed to specify the basis vectors of the irreduci-
ble representations of SU(3).

2. EXPLICIT EXPRESSION OF THE FUNCTIONS Y*~*,,

In this section we shall solve explicitly the problem just
described, to obtain the eigenvectors of A 2, J %, J5, another
Casimir operator of SU(3), and a fifth operator to provide
the missing label in the reduction scheme SU(3)
DSO(3)DSO(2). This problem has been widely studied and
solved.®'? Our approach generalizes that of Dragt.> His
method is based on algebraic manipulations of creations and
annihilation operators. A similar approach is used in Ref. 9,
but in another representation of SU(3) and with different
technical details. A general study of the SU(3)DSO(3) re-
duction scheme can be found in Ref. 10. Different complete
sets of commuting observables can be considered'®'"; we
will pick the easier one. Finally, in Ref. 12 an equivalent
result is obtained using a different approach.

A. Complete set of commuting observables

Let the complete set of generators of U(3) in its representation on (q,q") [cf. Eq. (6)] be

1
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| '1
- 1 ~
Ju= 11!’ K, =4 —4 .
. 2
L 1 . L
3 N i
1
K 127 .1 s K B=
-1 .
L - L. 1
- _ 2 . - -
4 .
- -2 .
Ky = % 2 ) ’ K23 =
—4 .
L 2 d "
- _ 2 . - o
-2 .
. 4 -
K33 - % 2 . ’ S = _ l
2 .
ol - 4 - L
where
Izu +1€22 +K33=0- (9b)
In its representation on E these generators are written
6, .
Ji= Y WyasPals s
a,f=1
6 -
K, = (Ky)agPals » (10a)
aB=1
6
S = z (S)aﬂpa rﬂ ’
af=1
where
, . d
(P)=(9q), (g)=|i—, (10b)
apg
and their nonvanishing commutators are
[ ] = i€y »
[VisKmn | = U€xmiKin + €xmKomi)s (11)

[Kmn ’Krs ] = i(amr ensl + 6m.v enrl + 6nr€msl
+ ‘sns emrI )JI ’
whereJ,, = 4€;;,,J- The quantities J, K; generate the sub-

group SU(3), while J; generate the subgroup SO(3) of rota-
tions about a center-of-momentum frame, Q =0

)

x=A,B,C

J= rx/\px’

(12)
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(92)

rwhere r, = i(3/dp, ). The three usual Casimir operators of

U(3) are
S,

3 3
G*=3JI+1 Y K, (13)

i=1 =1
3 3

G = % ; Kinleli - JrKﬂJh

LiI=1 =1

where G ‘2, G *’ are the corresponding Casimir operators of
SU(3). It should be noted that in this representation S, G,
G ® are not independent

G‘3)=§S(4+G(2)—§S2), (14)

as we could guess from the fact that each irreducible repre-
sentation of SU(3) occurs once and only once in its decompo-
sition. Equation (14) implies that we can use S and G ‘*’ as
Casimir operators of SU(3); thus, we change an eigenvalue
problem for a cubic operator into one for a linear operator.
On the other hand, the togetherness operator

6
A= oTs —DPals)?
%a.;=l(p £ p B)

= 3JI+1 3 Kj— &S s
i=1 Lhi=1
can be written [cf. Egs. (13), (15)]
A2=G(2)_§sz.> (16)

Therefore, to fix the irreducible representations of SU(3) we
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can use the eigenvalues of the operators S and A 2.

The algebra of SU(3) contains the subalgebra of SU(2)
in two different ways, namely, generating a subgroup SU(2)
or a subgroup SO(3)." The main difference is that in the first
case an element can be found among the remaining ones of
the algebra of SU(3) which commutes with the subalgebra of
SU(2) [the usual scheme SU(2) < U(1)], while in the second
case this is not possible. We are interested in the second case
because the total orbital angular momentum J?2 = 23_,J?
and its third component J; correspond to a subgroup SO(3).
Thus, we must go to the enveloping algebra of SU(3) to find
an operator whose eigenvalues provide the missing label.'!
The surprising thing is that none of the operators solving the
missing problem has integer eigenvalues.'* (This implies
that in general we will need numerical calculation.) We will
choose the easier of such operators, the one of lower order,
ie.

3

X= % JK,J,. an

i
=1

B. The trick of the harmonic oscillator

The problem is the construction of a basis Y *#R-, in E
which diagonalizes the observables A 2, S, J 2, J,, X

AZYMRL () =A (A +4)YHRE (),

SYHRL, (@) = — pY ¥y (@),

JPYHRE (@) = L (L + 1) Y#R0 (), (18)

J3YA“RLM((0) = MYMRLM(“’)’

XY #RL (w) = RY*#*E, (),
where A, i, R, L, M are the quantum numbers associated
with A2, S, X, J?, J, and w is a point of Ss. To this end, we
generalize the algebraical approach introduced by Dragt.?

The momentum and position operators p,,, 75 correspond to
canonically conjugate variables

[Pats] = — i85, aB=1,..6. (19)

The U(3) operators have the same expression in the momen-
tum representation (7, = id/dpg) as in the position repre-
sentation ( p, = — id/dr,) [cf. Egs. (9), (10)]. Therefore,
the eigenvectors of A 2, S, J 2, J;, X have the same expression
in both representations. To obtain the explicit expression of
Y##RL, , we shall use the position representation.

Let 7, & be the polar coordinates in the position space,

(37"

a=1
and @ the five angular variables fixing a point of 55, the
surface of a sphere in this space. The Hamiltonian of a six-
dimensional harmonic oscillator,

6
H= z (pza +r2a)’ (213.)
a=1
can be written using polar coordinates
1 ( & 54 A? )
2 ar r ar s (21)

where A ? is the togetherness operator depending on the an-
gular variables. The corresponding eigenvalue equation
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Hlp(r"‘/’) = E‘/’(r’a/;) (22a)
is equivalent to
F 58 A+ EA () —
((9;'2+ r or ——rz_—_rz+2E )F =0
(22b)
AYH @) =1 +4) YD), (22¢)

where ¥(r,@) = F " (r)Y*(@). In the previous section we
proved that to classify the functions ¥ *(@) we can use the
operators S, X, J %, J,. The trick of the harmonic oscillator is:
i) to associate with each set of values 4, u, R, L, M one of the
values E compatible with A; ii) to construct algebraically
with creation operators acting on the vacuum or lowest ener-
gy state |0) the corresponding eigenfunction of the harmonic
oscillator, and iii) to factorize the angular part ¥ *Rt,, of
the eigenfunction.

Let the creation and annihilation operator representa-
tion be

at =4[r+ir—i(q +iq],
bt =4[ —ir —iq — ig)],
(23)
a=1r—ir+iq —ig)
b =4[’ + ir + i(q + i),
where (r,r') = (r,), (q,q") = (p, ). Their nonvanishing com-
mutators are

[ana/‘+ ] = [bnbj+ ] =6,

ij?

ij=123. 24)

The vectors of the state space are polynomials in creation
operators P(a™ ,b ™ )acting on the vacuum. The U(3) gener-
ators are written

J=iaAa* +bAb"),
K;,=b b +b;"b, —(aa; +a'*a,)

~28;(b*b—a*-a), (252)
S=b*b—at-a,
and the Hamiltonian operator is
H=a*ta+b"b+3. (25b)

It follows from Eq. (25a) that only four independent bilinear
operators commute with U(3)

N,=a"-a,
N, =b*:b,
(26a)
A4, =atht,
4_ =ab,

where N,, N, measure the number of exitations of type @ and
b, respectively,and 4 , are operators of double creation and
annihilation

(Nopd . J=+4, . (26b)
The Hamiltonian operator H# commutes with ¥, and NV, but
not with 4 ,

[H4, 1= +24, . X))
Therefore, the eigenvectors of H, A %, S, X, J 2, J, are eigen-
vectors of N, ,, but not of 4
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4, |[EAURLM ) = |E + 2AuRLM ), (28a)

except when E is the lowest energy value compatible with 4,
in which case

A _ |EAURLM ) =O0. (28b)

We will associate with a given value of A the lowest energy E
compatible with it.
The eigenvalue equations of A  and S can be written

[(Na +Nb)(Na +Nb +4) _44 + A - ..”E/{‘IMRLM)
=A(A +4)|EAuRLM ). 29)
(N, — N)|EAuRLM ) = u|EAuRLM ) .
If |[EAuRLM ) satisfies Eq. (28b), Eq. (29) implies that the
polynomial in creation operators P %Rt (a+ b™*) acting
on the vacuum is composed of a sum of terms with n, opera-
tors of type @ and n, of type b
n, +n, =4,
(30)
h, —n, =4. .
It follows from Eq. (25b), that the lowest energy E compati-
ble with A isA +3,
(N, + N, +3)|EAuRLM ) = E |[EAuRLM ) . (31)
In order to obtain the eigenstates of J? and J, it is useful to
introduce a spherical basis

at, = —(a; +ia; V2,
ao+ :a;»,

at, = — 1'02*)/\/5,

similarly for b *, a, b; whose nonvanishing commutators are
[a..ar 1=[b...6]=(-D"b,,,, mn= +10—1.
(32b)
It should be noted that we are only interested in the state
with M = L because the others are obtained from it applying
the operator
J_,=J,—il,. 33)

We shall see that J _, acts in a very simple way. In order to
construct a state with total angular momentum and its third
component equal to L the terms of the polynomial in cre-
ation operators must be of the form

(a+,a+)3u(b+,b+)sh(a+.b+)Sub
X@i) M) @ Abt)n,

where

V.+V, +V,=L. (34b)

Note that (a *+a*)%(b * b *)*(a * b +)* is the most gener-
al scalar operator and (a7, ) (b 1 Y@+t Ab*)" the
most general operator generating a state with angular mo-
mentum equal to its third component which can appear in a
term of a polynomial. Thus, the state |4 +3,AuRLL ) has
the form

(32a)

(34a)

N e | SISISTVIVIVE), (35a)
where ¢; are numerical coefficients to be determined,
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| SISISEVIVIVY)
_ (a*-a*)sf(b‘*-b*)sf’(a*'b +)S§’"
X@*,) ®t,) @t Ab+H)Y] [0), (35b)

and 7 goes over the sets of natural numbers S¢, S2, S, V7,
V', V2 satisfying

28T+ ST+ SPHVI)+VIHVI=4, (36a)
A5 —SH+VI-Vi=p, (360)
Vit Vi4 Ve =L, (36c)

Really V% is fixed, it is equal to O or 1 depending whether
A + L is even or odd. This is because greater powers can be
reduced and the addition of Egs. (36a) and (36¢) implies that
Ve 4+ A + L must be even.

To obtain the coefficients ¢, up to a global factor, we
must solve the equations

4. (zc,. |s;'sfs;‘bV7V§>Va,,))=o, (372)

(X—R)(Zc,. [S?Sf’S?"V;’Vf?Va,,)) —0. (37

Their resolution is reduced to solve a system of linear equa-
tions if we introduce the action of 4 _ and X on a state
15,858 Vo Vi Vs )»

A_|S.8,8, V.V Va)
=4S,8,|S, =18, =18, + 1V, ¥, Vo)
+285,V, | S, = 18,8, V, +1V, —1V,)
+28,V, | 8.8, =18V, =1V, +1V,,)
+8,,[Sap + Vo + Vo +2(S, + S, + Vo +1)]
X18:8,80 — LV, Vo Vo), (38a)
X|S.8,8u VoV Vas)
=4S, V,2V, +2V,, —1)
X|S, —18,8, +1V, +1V,
—4S,V,(V, —1)
XIS, =18, +18,V, +2¥, —2V,)
—4S, V.2V, +2V,, —1)
X|S,8, —18, +1V, -1V, +1V,)
+ [4S, V. =SV + V.V, + D=V, (V, + D

+ V.. (84S, 2V, + D) — 5,2V, + 1)
+2V,(V, +3) =2V, (¥, +3))

+ %(Va + Vb + Vab)(Va + Vb + Vab +1)
x2S, = Sp) + V. — V)]

X ISaSbSab Va Vb Vab) +4Sb Va(Va - 1)

X|S, +18, —1S,V, =2V, +2V,.). (38b)
[These equations can be obtained using the definitions of
4 _ in Eq. (26a), X in Egs. (17) and (25a), and
|S,8:8, V.V, V. ) in Eq. (35b), the commutation relations
in Eq. (32b), and the fact that the annihilation operators
destroy the vacuum.}

In general to solve this system of linear equations, it is
necessary to resort to a computer. This is due to the fact that

_1 Vab)
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in general R must be calculated numerically.'"-'* We have
made a computer program to calculate the R eigenvalues
and the corresponding coefficients ¢; for any 4, i, L assign-
ment (note that the numbers ¢; do not change underJ _,,
and therefore they are independent of M ). The output of this
program for the lowest L, A, 1 values is given in Ref. 1, using
the conventions which we shall fix in the next section. The R
values are not given in this reference, but can be found in Ref.
11 with an extra factor 3/2.

The input of this program are the values of L, 4, 4 and
the output the values of R and ¢;. It is composed essentially
of four subroutines. The first one verifies that [cf. Egs. (36a)—
(360)]

A>0,
u=AA-24-4,.—A4,
L<A,

and evaluates the number of times that the representation L
of SO(3) occurs in the representation A, i of SU(3) using
Racah’s formula'’
N (Ap) =TP[(A +2 —L)/2] — IP[(A +pu +2 —2L)/4]
—IP[A —p +2—2L)/4], 40)
where IP[x] means the integer part of the positive part of x,
i.e., IP[x] vanishes for x < 0 and IP[x] is the largest integer
less than or equal to x for x>0. Depending on the value of
N, (A,u) we have three cases: i) N, (4,14) = 0, this means that
there is no eigenvector with values 4, , L; i) N, (A,u) = 1,
in this case there is only one vector for the A, u, L values, and
we do not need the eigenvalue R and Eq. (37b) to find it; and
iti) N, (A,12) > 1, then to obtain the different eigenvectors we
need the different eigenvalues R and the Eq. (37b). For the
nontrivial cases (ii) and (iii) the second subroutine con-
structs the terms which can appear in the polynomial (35a)
using Egs. (36a—c). The third one solves the Eq. (37a) for the
former cases. This means that it obtains N, (4,1) indepen-
dent linear combinations verifying this equation. To this
point the use of a computer program is not essential because
these linear combinations, up to a normalization factor, have
integer coefficients [cf. Egs. (37a), (38a)]. They span the sub-
spaces corresponding to the N, (1,1) representations L of
SO(3) occurring in the A, u representation of SU(3). The
fourth subroutine, which is essential only for the case (iii),
evaluates the matrix of X in these bases using Eq. (38b), then
it diagonalizes this matrix, whose eigenvalues are the R ei-
genvalues and whose eigenvectors satisfy Eq. (37b) and give
us the coefficients c;.

(39

C. Explicit expression of the functions Y*#7¢

To obtain explicitly the functions Y *RL, (%), we must
write the corresponding harmonic oscillator state in the po-
sition representation and factorize the angular part. The ra-
dial part is the corresponding solution of Eq. (22b), i.e., for E
equaltod +3

FEA (r) — rie — r2/2.
Therefore
YH#RE @)=r" Agr/? (r,6)\|PE“‘RLL(a tebt) |0) 42

@1
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where P#RL (a* b +), E = A + 3, is the polynomial in
creation operators obtained in the previous section. In the
position representation it is a differential operator which
gives a polynomial in (r,r’) multiplied by e ~ /> when acting
on the vacuum [the corresponding solution of Eq. (22a) for
E =3, {r,®|0) = e~ "/2]. This polynomial must be homo-
geneous of order A according to Eq. (42). From Eq. (23) and
the vacuum expression we have

YHRL @) =r~APAH3RL (¢ L —ir),  (43a)
where @ are the angular variables associated with (r,r). In
the momentum representation we have the equation

YR (@) = p~ AP MRL (g 1 ig,q —ig), (43b)
where

p =( i pi)m

a=1
and w are the radial and angular variables associated with
(p) = (@9
We are interested' in the explicit form of Y *#*£, (w)
when o is specified by two Dalitz plot variables,'® p, ¢, and
three Euler angles,'” a, B, y. The variables p, ¢,

0<p<l, 0<@<2m, (44a)

are polar coordinates of the Dalitz plot defined by the points
which are distant p2 /p?, x = A,B,C from the sides of an equi-
lateral triangle of unit altitude,

Pz =p(1 + pe,)/3,
(44b)
€, =cos(¢p —2k,7/3), k, =123,

where the three-momenta p, are assumed in a center-of-mo-
mentum frame. The angles a, B, ¥ fix the rotation from an
initial standard frame to a frame attached to the three-mo-
menta p, and defined by the orthonormal vectors [cf. Eq.

(3]
u = [sin(¢ /2)q + cos(¢ /2)q' V(1 + p)p*/2]",
v =[— cos(¢ /2)q + sin(¢ /2)qV/[(1 — p)p*/2]'*,(45)
w=uAv.
From these definitions it follows that
(d' + iQ*/p* =ep,
@ —iQ*/p* =e “p,
(@ + ig)q — ig)/p> =1, (46)
@+iw,./p=—e**[(V1-p+V1i+p)D} @By
+ (\/1 —P— Vi +p)DL (a»BV)]/Z’

@ —ia),,/p
= —e #2[(V1-p+V1+p)D! (aBp
+V1—p-V1+pD" ,,@n])2

(@ +iQA@Q —i@] ,,/p* =iV 1 —p* Dy (aBy),
where the D functions are the usual matrix elements of the
rotation group SO(3). Using Eqs. (35), (43b), and (46), we
obtain the expression

) G (pd.aBy)
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= T o) e 4o (—e* 2 [(V1—p
i

+V1 +p)D |, (aBy) + (\/1 —p -Vi +p)
XD, (@BN]1/2) (e *"

or developing the different factors

x[V1-p=V14pD @By
+MV1-p+Viip)

D! )YV 1-p*D}, &
XD, (@fn]/2) (i p* Do (aBy)) @)

YHRE (pafp) = 3 ¢ (—1)"7(1/2)7 ekt (1 — p2) " pT
J

X
wito\n,/\n,/\n, +n, —Vf—Vf+na+nb

L Vitn,—n
L—p+Vi4p) 7 ™
— V= V! +2n, +nb))(v p+V1te)

( V;’ + V,lb Vab
X
— ViV 2An, +n) O

xM1—p-Vigp) "~

where ( | ) is a Clebsch—Gordan coefficient of SO(3). This
last equation gives the announced explicit expression of the
Y##RL functions if we add some remarks. In Eq. (47b) the
dependence on the eigenvalue L of the third component of
the angular momentum is only through a subindex of the
matrix elements D. Obviously J _, decreases one unit in this
subindex, and the general expression of Y *#%L,, is obtained
replacing L by M in such subindex. Remember that ¥, is 0
or 1 according toA + L be even or odd, and only two of the
four natural numbers S, S7, V¢, ¥V are independent, al-
though bounded. Thus, taking for instance, S 5HS ,” or equiv-
alently S¢ + S?, S¢ we have [cf. Eq. (36)]

V;—*— Vf=L— Vaby
Ve-Vi=p42St—S9, (48)
SE+SI<K@A—L—V,)/2

n,+n,

DL

3. SYMMETRY PROPERTIES OF THE FUNCTIONS

ApAL

In the last section we have obtained the general expres-
sion of Y ##RL, but we have not fixed its normalization and
phase. The coefficients ¢, are normalized according to

f YHRL (@) Y4 #EL () do
Ss

= 511'6;4;4‘ Orr O Onar > (492)
where
T 87

The phase is fixed imposing that the only complex factors in
Y*RL  arethe exponential e**/2 and the matrix elements D
(the factor i** in Eq. (47b) disappears) and taking the follow-
ing sign convention. If > 0 (or 12 = 0 and R>0) the first
coefficient ¢, must be positive, where it is assumed the order
relation
J<SifS;+8)<SF + 8] orif S)<S; when S +S?

=87+ Ifu<0(oru =0andd <0) it is assumed the
equation

T ) = (DM Ry 6D
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— Vi —Vi42n, + n)L (aBy),

Vet ve )
—Vi=V}+2n, +n,)

(47b)

T The parity transformation P changes the sign of q, ¢ [cf.
Eq. (3)]. Then, as p* **#RL_is a polynomial of order A in
these vectors [cf. Eq. (43b)],

YL (Po) = (— 1Y 4RE (). (51)

The transposition of the two first particles T, interchanges
the rolesofa* and b ™ [cf. Egs. (3), (23)]. Therefore, it
changes the sign of S and X while A 2, J? and J, remain un-
changed; this implies that

YRl (Tpo) = (=D Y R @),  (52)

where the extra sign arises from the sign convention. The
cyclic permutation C,pc can be written [cf. Egs. (8b), (9a)]

Capsc = cosirl + sing#rS, (53a)
therefore
YMRLM(CABC(") =/ YA“RLM(‘U) (33b)

4.“3v” COEFFICIENTS

In some problems'? it is interesting to expand the pro-
ducts of Y*#RE,, functions in linear combinations of them-
selves. This is done using the “3+” coefficients. [ | ],

YA‘#‘RILIM, (a))),'/lzszzL,M2 (w)

(L, L, Lz)
aw kit \ My M3 IM,
AdirR,

Ay R, AR, )
X ( Y'{WJRJLI
Ll L3 L2 M, (w)’ (54)

where (| ) is the corresponding Clebsch-Gordan coeffi-
cient of SO(3). In order to study their properties it is more
convenient to introduce the symmetrical “3+” symbol, [ ],

f YA.M.R,L.MI (w)YA’H’R’LZMZ (w)YAWJRJLJMJ (w) dw
Ss

— L, L, L, )(11.“11% AR, '13/~‘3R3) (55)

1 M 2 M 3 L 1 L2 L3
where () is the usual 3/ symbol. As can be easily proved,
ARy AR, AR,
L, L, L,
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ARy ARy Ay
L, L,

— i3 — Ry
Ly

_ (_I)L.sz
VoL, +1

Using the explicit expression of Y *#*%, in Eq. (47b),
with the corresponding conventions, and the 3v symbol defi-
nition in Eq. (55) we obtain its explicit expression

]. (56)

1

ARy AopioRy AusRs
L, L, L,

|

where i, x = 1,2,3 are restricted by equations of the type
(48) and

= 50’#| + 1y + 15 Z Cil ciz Ci} Ly ® (57a)

i\ins

'x

AV + V2

Qi = (=D Q) z (—pFeEe®
n =0,
x( L, L, L, )
Anf +n0) =V =V 25 +n3)—V5 —V3; 205 +n3) = V5 — V3
[( )(Vb)cz +nt VE+VE—ni—nt Vi+ Ve )
X
H T +nd ni+n§—V§’x—Vf-’x 2(nj’c+n§)—Vf.‘x—fo
( Vi+v? yab L,
e +nty—ve -V 0 202 +nt)—VE—V?
S Ve 4k S¢ 4+8° ve +v° N
« (B(x_x__H(,, VRN L)
k g > 2 5 + (57b)
k+ 2, ¥ %even
-
where le - L2i<L3<L1 + L2~ (64)
a__pb , Equations (63) and (64) follow from the delta of Kronecker
N=|> —2——— — ni+ny in Eq. (57a) and the 3J symbol in Eq. (57b), respectively.

and B (x,p) is the usual Beta function.'® In Ref. 1 the 3v coef-
ficients are tabulated for the more usual cases. They have
been calculated using Eqgs. (56), (57) and the computer pro-
gram which evaluates the ¢; coefficients.

The 3v symbols have symmetry properties similar to
those of the 3J symbols. From their explicit expression in Eq.
(57) it follows that

ARy AR, /13/‘3R3]
= 1’ 5
[ L L, L, rea (58)
[iuulRl ApioRy /13/-‘3R3]
L, L,
— ARy ARy AR,
L, L, L,
A, Ry AR, AR
=(~1 L,+L,+L, 2432 1431 3483 , 59
(=D e Al A ] (s

if we note that the ¢, coefficients are real and the permuta-
tions of the indices 1, 2, 3 are only relevant for the 3/ symbol
in Eq. (57b). The relation

[/{u“le AdtoRy AusRs ]
Ll L, L,
)L + L,+ L,y
[/1 —p1—Ry Ay—p,—Ry A3—p;—R,
L, L,
(60)

can be proved by introducing Eqgs. (51), (52) into the defini-
tion (55). The indices A, 1, L must also satisfy the equations:

A, + A, + A5 =even, 1)
4, — A2 A3, + 4, (62)
@y 4+ p13=0, (63)

2334 J. Math. Phys., Vol. 21, No. 9, September 1980

Equation (61) follows from Eqs. (39) and (63), while Eq. (62)
can be obtained from the reduction of the product of two
SU(3) representations.
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A recently discovered relation between pairs of semisimple Lie algebras is further investigated.
This relation, which is called subjoining and denoted by “> ”, is a generalization of inclusion,
where a subalgebra is embedded in an algebra. Nontrivial subjoinings of two algebras of the same
type are described. New chains of algebras involving proper inclusions and subjoinings can be
formed. Infinite families of maximal subjoinings C, > B, and B, > C, are shown.

I. INTRODUCTION

The purpose of this paper is to investigate further the
relation of subjoining' between two semisimple Lie algebras.
Subjoining is a generalization of embedding a subalgebrain a
semisimple algebra in the sense that every embedding is a
subjoining, and it gives new relations between pairs of alge-
bras that are not algebra-subalgebra pairs. As far as we
know, this relation has not been reported in the mathematics
literature and it may prove to be useful in applications such
as symmetry breaking, construction of bases, classification
of states, and in other situations where the analysis of sub-
groups is useful. It has already proved to be a valuable short-
cut in lengthy computations of certain generating functions
in group representation theory.' Our aim here is to provide
many new examples, which ought to be helpful for develop-
ing a better understanding of subjoining.

Among the examples here is an infinite family of sub-
joinings of mutually isomorphic Lie algebras and subjoin-
ings B, > C, and C, > B, for n>»2. We use throughout the
paper the symbol > for subjoining; when a subjoining is a
usual embedding (inclusion) we use D .Subjoinings and in-
clusions can be combined into chains; this also creates new
subjoinings, for instance C, > B, DD, gives C, > D, , which
is not maximal.

All considerations of the paper are carried out in terms
of weight systems of finite dimensional representations of
semisimple Lie algebras (groups). In this way all the oper-
ations are well defined. Naturally, one would like to employ
the one-to-one correspondence between a representation
and its weight system and to transfer all the results into lan-
guage of representations and/or the representation spaces.
At present, the possibility of such a transfer is an open
question.

“Work supported in part by the Natural Science and Engineering Research
Council of Canada and by the Ministére de I'Education du Québec.
"Work supported in part by the United States Department of Energy.
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The principal difficulty that is encountered can be illus-
trated as follows: suppose that W, is the set of weights of a
representation @ of an algebra G, and W, is a similar set
referring to a representation ¢ of G; if, furthermore,

W, oW, =W, (1.1)

i.e., the set of weights W contains every weight of W, then
W, \ W, can be defined to be the set of weights W, from
which all the weights common to representations ¢ and ¢
have been subtracted. Hence the operation of subtraction
W, \W, is well defined provided (1.1) holds. A necessary
condition for (1.1) to hold is congruence® of representations.
In analogy with the one-to-one correspondence,

(1.2)

where on the left is the direct sum of representations ¢ and ¢,
and on the right stands its weight system, we would like to
infer a relation between W_\ W, and the “difference” @-¢.
The difficulty is in defining the latter operation.

We say that a semisimple algebra H of rank r,, is sub-
Jjoined to a semisimple algebra G of rank 7 >r;,, and write
G > H, if there exists an r; X r; matrix Pofrank r,, such that
for every finite dimensional representation ¢(G ) of G, thereis
a branching rule,

PW, .y = Wy, \Woary» (1.3)

where ¥(H) and «(H) are representations of H. Clearly the
matrix P is not unique. We do not need to distinguish two
matrices P and P’ that give the same result when acting on
W, of (1.3), namely W_\ W,. Hence P is specified up to
transformation by elements of the Weyl groups of G and H.
With a suitable choice of bases in the root spaces of G and H,
all elements of P are non-negative integers. The algebra H is
called a hypoalgebra of G.

If H is a subalgebra of G then clearly it is also subjoined
to G. Indeed, in such a case the right side of (1.3) equals
Wy, i.€., the set W, is empty. Many examples of the
matrices P for subalgebras are found in Table IV of Ref. 3.

For simplicity of notation we shall write (1.3) as

Pp(G)=YH) —w(H)

@ + p— W UW,,

(1.3a)
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or

e (G)y>YH) —w(H), (1.3b)
and we shall talk about representations instead of weight
systems.

In order to specify a subjoining of H to G, H < G, we
either give the matrix P or the result of its action on the
weightsystem W of a faithful representation g (G ) of G, that
is, we give the representations ¥(H ) and w(H ) of (1.3b).

A subjoining G > H is called maximal if it cannot be
extended into G> H'> H, where G>H ' and H'> H are
specified by a matrix P such that |detP| > 1.

Conventions concerning the representations, number-
ing of simple roots, etc., adopted here coincide with those of
Dynkin.*?

In Sec. II an example of C, D H and C, > H, where C, is
the Lie algebra of groups Sp(4) and O(5), and H in both cases
isofthetype 4, + 4, [group SU(2) X SU(2}}, is considered in
detail in order to illustrate the distinction between a usual
inclusion and a genuine subjoining. Section III contains a
description of maximal subjoinings between two isomorphic
algebras. With only a few exceptions these are given by
P = nl, where I is an identity matrix and » is a prime num-
ber. Some other subjoinings that are maximal and do not
involve isomorphic algebras are described in Sec. IV. Section
V contains comments and remarks.

1. AN EXAMPLE

Let us consider an example where G is the Lie algebra
C, of the group Sp(4). C; contains only one subalgebra S of
rank two; it is 4, + A4,. [In other words, Sp(4)D.S

= SU(2) X SU(2).] However, there is another algebra H,

which is also of type 4, + 4,, that is subjoined to C,.
[Sp(4) > H = SU(2) X SU(2).] In order to illustrate the dif-
ference between embedding SU(2) X SU(2) and subjoining
SU(2) X SU(2) in Sp(4), we first examine the weight system
of the adjoint representation of C,. The weight system of the
adjoint representation is also the root system of the algebra.
Every weight A is a linear combination of the simple roots,
which are conveniently summarized by the Dynkin dia-
gram.* In terms of the simple root basis, a weight A is conve-
niently specified by the integer coordinates,

A, =2(A4,a)/(a,a,), 21

where the simple roots @, are numbered as in Table I of Ref.
4. The C, algebra has the two simple roots, a, and a,, shown
in Fig. 1a, and the weight system of the adjoint representa-
tion in the simple root basis and the components (2.1) is
a,=2a,+a,=2,0), a=a,+a,=00,1),
2.2)

s =a,=@2,—1), and a,=a,=(—22).

The four negative roots are — a,, — @,, — a;,and — a4, and
the two zero roots correspond to the Cartan subalgebra. The
a, are indicated in Fig. l1a.

The subalgebra may be derived from the C, root dia-
gram by the projection matrix’

11)
PS:(OI ’
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(2.3)

which transforms the root system (and any weight system) of
C, into a root (weight) system of S. If we arrange the coordi-
nates of the weights vertically, then the explicit calculation

of the positive weights of S gives

poi= () -) -s.

Psa, =(;) =1 +18,

1
PS"3=(—1) =3

poc-() -5

where £, and 3, are the two simple roots of

§ = SU(2) X SU(2) shown in Fig. 1b. The weight system is
completed with the negatives of Pya; and the two zero
weights. The root system after projection is the weight sys-
tem of a reducible representation of the subalgebra. There
are three irreducible components corresponding to the high-
est weights, 8, B,, and | B, + } B,. Thus, the branching rule
for the adjoint of C, into irreducible representations of

A, + A,, written in terms of highest weights in the notation
of (1.3a), is

Ps(20) = (2,0) + (0,2) + (1,1). 25

The root system of the subalgebra (see Fig. 1b) consists of 3,,
B, their negatives, and two zeros. In a similar way the ma-
trix Pg allows the reduction of the weight system of any

- %ﬂz,

(2.4

q 2 1
[} o
2
o X, 3
] ° °
CZ
(a)
4 2 1 4 2 1
[ o o
A
BN, B ,
o o
[ 3 ?;
o o © o o o
S=A+A, H=A,+A,
(b) (c)

FIG. 1. Roots and simple roots for (a) C, which is the algebra of Sp(4)
group; (b) the subalgebra 4, + 4, of C,, where A, is the algebra of SU(2)
group; (c) the hypoalgebra 4, + 4, of C,. Roots are indicated by circles,
simple roots by arrows.
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representation of C, into a representation of the subalgebra §
(see Ref. 6).

The procedure of subjoining allows the consideration of
the projection matrix

po=(9) 2o

(The origin of P,, will become clearer in the next sections.)
P, projects the root system of C, onto the weights, W,

1 0\ /2 2
Pya, = 12/ =4 =Y +72

0
Pya, = (2) =72

2
Pya; = (0) =7

Pﬂa,z( 2 )= — Y+ 7Y

plus two zero weights and the negatives of (2.7). The simple
roots of H are ¥, and 7,, and are shown in Fig. 1c. Equations
(2.7) show that the highest weights of the irreducible repre-
sentations of A are (2,2) and (0,0); the branching rule is

P, (20) = (2,2) + (0,0). 2.9
Note that the adjoint representation of 4, + A, does not ap-
pear on the right hand side of (2.8).

The projection of the weight system of a simple algebra
onto that of a hypoalgebra has a feature that is exemplified
by studying the 5-dimensional representation-of C,, which
has highest weight (01). The application of P,, to the weights
of this representation gives the weight system

P4(OD = 2,0) + (02) — (00), @9

in the notation of (1.3a). Of course, no weight ever appears a
negative number of times in the branching rule; (2,0) and
(0,2) each have one zero weight. '

The result of the action of the projection matrices Pg
and Py on weight systems of all representations of C, can be
expressed in terms of the corresponding generating func-
tions. Thus for C, DS, the generating function is'

1/(1 = NS — NS — N)(1 — N,S,S,).  (2.10)

In order to retrieve information from (2.10), one has to ex-
pand it in a power series. Its general term has the form
mis NTNESS3,
where n,,n,,5,,5, and m;"; are positive integers. The pres-
ence of such a term in the series means that the weight sys-
tem of the irreducible representation (n,,n,) of C, after it has
been projected by means of Py into a weight system of a
(reducible) representation of S, contains the weight system
of the irreducible representation (s,,s,) of S exactly m3:.
times.
In the case of C, > H a similar interpretation is given to
the generating function' :

(1 + N\NHH)/(1 =N 1 — NH})(1 — N,H?)
X (1 — N.H,H)(1 + N,). .11

In this case the role of variables ¥, and N, is the same as in

Q2.7
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(2.10), i.e., in the expansion they carry the coordinates of the
C, highest weights, the powers of variables #, and #, specify
highest weights of representations of H. When a coefficient
m’": of the power N 1'N 3:H |'H % of the series is negative, it
implies that the weight system of the representation (/1,,4,)
of H has to be subtracted mf‘,;f',g times from the result of the
projection of the weights of (#,,n,) by the matrix P, . Condi-
tion (1.1) is automatically satisfied, i.e., a weight that is being
subtracted is always there in the first place.

As an illustration of the use of the generating functions
let us answer the following question. Which representations
of C, contain the adjoint representation, (2,0) + (0,2), of the
subalgebra S and the hypoalgebra H ? For that one needs to
find the expression multiplying S? +S3 and H} + H 3 re-
spectively in the power series of (2.10) and (2.11). That ex-
pression is equal to 2_ , N3N in case of (2.10) and

— 35 _ 1 N¥(—Ny)'*'in(2.11). Hence the adjoint repre-
sentation of S is contained once only in representation (2,k ),
k ==0,1,2,... of C,, while the adjoint of H occurs in (2k,/) (/
odd) once, and is subtracted once in (2k,/) (/ even and non-
zero). Clearly this is in agreement with the particular cases
considered above.

lil. SUBJOINING OF ISOMORPHIC ALGEBRAS

Let us restrict our consideration to relations of the type
G > G. Unlike the embedding GO G, the subjoining G> G
turns out to be a nontrivial relation. Moreover, there are
infinitely many of them that are maximal. The present sec-
tion is devoted to the description of such subjoinings. In or-
der to avoid an ambiguity, the hypoalgebra is distinguished
by a prime.

A. Rank one algebras

There is only one semisimple Lie algebra of rank one
corresponding to groups SU(2) and O(3), it is of type 4,. A
relation 4, > A4 | is specified by the matrix P, which, in the
present case, is just an integer.

Proceeding as in the previous section, one verifies that P
can be any integer. Without loss of generality it suffices to
consider only positive integers. Instead of going into details
in this trivial case, we point out that the result of the action of
P = n on any irreducible representation of 4, is easily in-
ferred from the following generating function:

F(4,a) = (1 - Aa""*)/(1 — 4a”(1 — 4?)
=1+A4A(@ —a""?) +A¥a> — g™ + D+ o,
(n>2). 3.1
Thus the linear term in 4 indicates that for the two-dimen-
sional representation (1) one has the reduction

N> —@n—-2), 3.2)
which, in terms of dimensions, means 2 =n 4+ 1 — (n —1).
Similarly, from the quadratic term one concludes that

(2)>(@2n) — 2n —2) +(0), (3.3)

which again implies an equality of dimensions
3=2n+1—(2n—1)+1. The relations (3.2) and (3.3)
should always be interpreted as the corresponding relations
between the weight systems.
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A particularly interesting question is which representa-
tions of 4, contain the vector representation (2) of 4 {? To
find the answer, let us reorder the series (3.1) according to
powers of @ and find the coefficient of a*:

F(4,0) = -1——_—11;7{[1 + Ad" + (4a" + -]

—Aa""?[1 + Aa" + (4a")* + -1}

Obviously a* occurs in the series only in two cases, namely
n = 2 or 4. In the second case it occurs with a negative sign,
i.e., it is being “subtracted.” In the first case the relevant
term is

, A

1 -4

Hence the representation (2) of 4 | is found once in every
even dimensional representation of 4.

Consider4,> A4 > A, and suppose that P = n, in the
caseof 4,>4 ,and P=n,ford;, >4 >A . Then
P=nn,for A, > A7, as can easily be verified considering
weights of a representation. Consequently, the indecompos-
able subjoinings between two algebras 4, are those with n
equal to a prime number. In that case we say that the hypoal-
gebra is maximal.

a =a*A+A>+4°+ ).

B. Algebras of rank two

There are four semisimple Lie algebras of rank two:
A,,Cy,Gyand 4, 4+ A4,

Maximal subjoinings 4, > 4 ; correspond to P = (39),
where 7 is a prime number.

Maximal subjoinings C, > C; are those given by

no 01
Pz(o n) and (2 0)’

where n is a prime number different from 2. Indeed,
P= (33)= (35)(5s), hence such a subjoining is composite,
i.e., not maximal.

Maximal subjoinings G, > G ; correspond to

no 01
PZ(O n) and (3 O)’

with n prime, n53.

The matrices P = (35) and (55 ) , acting on the single
roots of C, and G,, interchange the roots without changing
the length of the longer one and stretch the shorter root in
such a way that it becomes the longer simple root of the
algebra.

The above assertions can be verified by considering the
action of P on weight systems of representations of the alge-
bras. It is again possible to summarize the action in terms of a
generating function. In particular, the subjoining 4, >4
with P = (29 ) leads to the generating function

F(4,B,ab)

(3.4)

(3.5)

3 1 ( 1 Ba )

T (1 —Aa)(1 —BbD)(1 —ABY\1+4b 1—Ba

—14+A4(@—b)+B(B*—a)
+AB@*»h?*—a* —b>+ 1)+ . 3.6)

There is no problem in finding the generating function for
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P = n(}9) with general n except that the computation is
laborious. The subjoining C, > C; with P=2(}%)and (3})
imply respectively
F= L
(1 =41 +4)(1 —BbD(1 - B)

1 Ba?
X(l +A4B 1+Ba2)’ @7
F= 1
(1 —A4b)(1 +A4)(1 — Ba®(1 + Bb)

(3.8)

It was pointed out earlier that the first of the two subjoinings
is a result of two successive applications of P = (3} ). The
corresponding manipulation of generating functions con-
sists of substituting (3.8) into another function of the same
type. The resultis (3.7). How to carry out such a substitution
as has been described previously.’

The subjoinings G, > G} with P= (39)and P= (§})
give respectively

1

F (1 —Aa®(1 — A)(1 — Bb3)(1 — B)
1 Ab?
(1 + Aa)(1 + Ba) = (1 + Aa)(1 — Ab?)
Ab> Bb

C(1—Ab®(1+4b%  (1+A4b%)(1 + Bb) (
3.9

1

= B Byl — b1 —4)

x( 1—Bb (3.10)

A% — Aab + ABaz)
1— B> )

1—4%°
Subjoinings 4, + A4,>A | + A | are obvious combina-
tions of 4, > A | of the preceding subsection.

C. Higher rank algebras

In most cases of rank > 2 maximal subjoinings G> G’
are exhausted by matrices P which are prime multiples of
identity. There are however some exceptions.

The first exception is F, > F; with P = 21. Consider

- O O O
o -~ O O
S O v o
S ©C O N

It provides a maximal subjoining F, > F ; such that the low-
est representation decomposes as

(0001) > (2000) — (0100) + (0010) — (0001).
Combining two such subjoinings, i.e., multiplying the ma-
trix P with itself, one arrives at the conclusion above.

Other cases in which P = 2/ is not a maximal subjoining
are C,>C and B, > B, for n»2. Corresponding explana-
tions are found in the next section.

The outer automorphisms of the algebras 4,,D,, and
E, could be defined as a particular case of subjoining realized
by matrices
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1
P(4,>A4") = ' :
1
1
P(D,>D))= ’ :
1
\ ")
1 0
0 0 0 O 1
0 0 01 0 O
) 0 01000

PE>ED=14 1 0 0 0 o

1 0 0 0 0 O

0 0 0 0 0 1

Each of them applied twice would result in a trivial subjoin-
ing given by the identity matrix. Therefore, we exclude these
cases by definition in order to preserve the concept of maxi-
mal subjoining.

IV. FURTHER EXAMPLES OF MAXIMAL
HYPOALGEBRAS

Itis natural to ask about all maximal subjoinings among
semisimple Lie algebras. At present we do not have an an-
swer to that question. Therefore, in this section we list the
maximal subjoinings that we have encountered so far. In
each case we present the reduction of the defining and the
adjoint representations to that of the hypoalgebra, and the
projection matrix P. In some cases we have also calculated
the generating function for the reduction.

1 0 O
P=|0 1 0},
0 0 2
(100) > (100) — (0),
(200) > (200) — (100) + (0),
F=1/(1 —-A4a)(1 +A4)(1 — Bb)
X (1 + Ba)(1 — Cc®)(1 + Cb).
2 0 0
P=]0 2 0],
0 0 1
(100) > (200) — (010),
(010)> (020) — (101) + (0),
(001) > (001) — (100),
F= L
(1 —A4a®)(1 — Bb*)(1 — Cc)(1 — B)

1.C,>B,,

(4.1

2.B,>C,,

4.2)

x( L
(1 + Ca)(1 — ABc*X(1 + Bac)
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n ACc
(1 + Ca)(1 — ABc*)(1 — ACc)

N AC??
(1 + Ca)(1 — AC)(1 — AC%?)
Ab
" (1 = 4ABcA)(1 — ACe)(1 + A4b)
n A%C3 % )
(14 A4b)(1 — ACc)(1 — AC?b?)
3.B,>C,, n>3,
2
2
P= :
2

1
(10---0) > (20---0) — (010--0) , (4.3)
(010---0) > (020---0) — (1010--:0) + (00010--0) + (0), (4.3a)
(0-:01) > (0---01) — (0--0100) + (0--010000) — --,  (4.3b)
(20---0) > (40---0) — (210---0) + (020---0). (4.3¢)

Clearly this case is a generalization of the subjoining of case 2
above. Similarly the next case generalizes case 1.

4.C,>B,, n>3,

(10--0) = (10--0) — (0),

(20---0) = (20---0) — (10---0) + (0).

Combining the subjoinings C, > B, and B, > C, and multi-
plying the appropriate matrices P, one arrives at the conclu-
sion that neither C, > C, with P = 2/, nor B, > B, with the
same P, is a maximal subjoining.

V. REMARKS

(1) Combinations of subjoinings naturally lead to a
great variety of subjoinings which are not maximal. One ex-
ample: The maximal subjoining C, > B, "of Sec. IV can be
combined with the proper inclusion B, D D, into the sub-
joining C, > D,,. In terms of matrices P one has
P(C,>D)=P@B,DD,)P(C,>B,)

1 1
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I

1 0
1 2

The low-dimensional representations of C, then branch into
representations of D, as follows

(10---0) > (10---0),

(20--0) > (20---0) + (0),

(0---01) > (0--:02) + (0---020) — (0---0100).
A similar example, where inclusion and subjoining are done
in the other order, is D, > C, _,, with
PD,>C,_,)=PB,_,>C,_, P(D,DB,_))

(2) Our second example of combining of subjoinings
and inclusions is an application to computing generating

functions. Let our objective be to find the generating func-
tion for reduction of representations of

SO(7) DSO(5) X SO(2), 5.1
which, in terms of algebras, is
B.DB,+ P, 5.2)

where P stands for the compact 1-parameter subalgebra. If
subjoinings are avoided, the inclusion (5.1) is maximal. Con-
sider the chain of groups

SO(7) > Sp(6) DSp(4) X SUR) > Sp'4) xU(1), (5.3)
or alternatively the chain of subalgebras
B;>COC, +4,>C, +P=B,+ P, 54

where in the last step we have used the isomorphism of C,
and B,; the subjoining Sp(4) > Sp’(4), or C, > C}, corre-
sponds to the generating function (3.8). In order to verify the
equivalence of subalgebras B, + Pand C, + P of (5.2) and
(5.4) one has to verify that, for instance, the reduction of the
7-dimensional representation of SO(7) results in the same
representation in both cases. Having confirmed that, we can
now combine known generating functions for B, > C, (cf.
(4.2a)), with that for C, D C, + A4, (it is readily found from
the results of Ref. 9), the generating function (3.8) for C;
> C,, and the trivial generating function for the step 4, D P.
The composition of generating functions is done according
to the prescription (3.2) of Ref. 1. Proceeding step by step
along the longer chain (5.4) instead of the short one (5.1)
results in a considerable economy of work. The required gen-
erating function is then:
[(1 — Ag*)(1 — Ag*(1 — Bbg*)(1 — Bbg'®)

X (1 — Cag¥(1 — Cag )]

1 B
(1 —4b)1 —C?%) + (1—-C%»)1—-B)
Ba? B2a?

+ (1 —A4b)(1 — Ba?) + (1 =Ba»(1 —B)Y|’

where the Dynkin labels of the B, representation are the
exponents of 4, B, and C, while power of @ and b label the
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representations of C, and the power of g labels the represen-
tation of P.

(3) Tensor products of “reducible representations with
minus signs” can be used for deriving the branching rules for
subjoining in the same way as for inclusions. There is one
subtlety which we now examine in detail on the example of
B, >C,.

The decomposition of the product of two natural repre-
sentations of B, is

(10-40)X (10-:0) = (20-+0), + (010--0),,

where s and a refer to the symmetric and antisymmetric
parts of the tensor product. Replacing each (10--:0) by the
branching rule (4.3), we have

[(20-:0) — (010--0)] X [(20--0) — (010---0)]

= (20--0) X (20--0) + (010---0) X (010---0)
— (20-0) X (01.-:0) — (010---0) X (200---0)

= [(40--0), + (020--0), + (010--0),
+(00-0), + (210--0), + (20--0), ]
+ [(020-0), + (010--0), + (00--0),
+(1010-0), + (20--0), ]
— [(210--0), + (1010--0), + (20--0), + (010--0), ]
— [(210-0), + (1010--0), + (20--0), + (010--0), ].

The cancellations between representations of the same kind
but appearing with opposite signs takes place regardless of
subscript a or 5. The results then are right sides of (4.3a) and
(4.3b). All other branching rules can be derived in a similar
fashion from the branching rules (4.3) and (4.3b).

(4) Higher indices of representations,” which prove to
be very useful for computing complicated tensor products
and branching rules®’ can be used also for the subjoining and
related operations without any change. Indices 7 “’(A,) and
I'*X(A,) of arbitrary order k of representations (A ;) and (A ,)
give an index of the difference (A4 ,) — (A,) as
19((A) — (4)) = T9(A) = T(AY), etc.

(5) The usual rules restricting branchings of selfcontra-
gredient representations™® apply also to subjoining. Thus in
G > H any selfcontragredient representation of G reduces to
selfcontragredient representations of H. However the dis-
tinction between orthogonal and symplectic representa-
tions>® disappears as can be seen for instance from the exam-
ple C, > D, above. That is, orthogonal (symplectic)
representations of G may reduce to both orthogonal and
symplectic representations of the hypoalgebra H.

(6) Most interesting of all the questions related to sub-
joining G > H is undoubtedly the problem of constructing
the generators of one in terms of generators of the other. It is
clear that such a relation cannot be a linear one.

(7) The definition (1.3) of subjoining implies that
lengths in weight space are increased (or in trivial cases re-
main constant) in passing from algebra weights to hypoalge-
bra weights. If the definition is relaxed somewhat, new sub-
joinings appear, in which the scale in weight space is
reduced; the representations of the parent group are con-
strained to belong to certain congruence classes. Thus for
A,>A |, with P =1, one is led to the generating function
(1 + A%/(1 — A4 ?a) for branching rules. The parent group
tensors must belong to even representations (integer angular
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momentum). Similarly for C, > C;, with parent group ten-
sors restricted to the non-spinor representations, in which
the first label is even, we find the generating function

(1+ B+ A% + A?%)/(1 — Ba)(1 — A?b) for branching
rules. Similar subjoinings exist for the pairs B, > C, and
C.>B,.

(8) The generating functions for branching rules were
found by matching dimensions and second indices for low
representations. They were checked by converting them to
generating functions for characters® and giving random nu-
merical values to the dummy variables.
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We develop a method to derive infinite families of completely integrable nonlinear Hamiltonian
evolution equations associated with Schrodinger spectral problems whose potential functions

depend on the spectral parameter.

1. INTRODUCTION

Since the discovery of the inverse scattering method by
Gardner, Green, Kruskal, and Miura,' it has become clear
that there is a wide class of linear spectral problems from
which infinite families of completely integral nonlinear evo-
lution equations may be deduced. Included in this class are
the Schrodinger problem,' the Zakharov—Shabat problem?
and its generalization® which lead to important nonlinear
evolution equations of mathematical physics. An infinite
subset of this class of spectral problems is provided by the
matrix Schrodinger equations proposed by Wadati and Ka-
mijo.* In this paper we present a new infinite subset given by
the spectral problems

(= 0u + z/z 0.00)f =4 (L.1)

One of the most intriguing aspects of the inverse scatter-
ing method is the relationship between complete integrabi-
lity and the existence of an infinite set of constants of motion.
It is suspected that this empirical fact means that the state-
ment of Liouville’s theorem® in classical finite dimensional
Hamiltonian mechanics is, in some sense, generalizable to
the infinite dimensional context. Indeed, many of the evolu-
tion equations arising in the inverse scattering method have
been found to be completely integrable infinite~dimensional
Hamiltonian systems.®* This suggests that the main task for
finding the completely integrable evolution equations associ-
ated with a given spectral problem consists in deriving an
infinite family of functionals which are in involution with
respect to some Poisson bracket operation. In what follows,
these families will be referred to as ‘“Liouville families.” A
common feature of several known Liouville families is that
they are generated by the coefficients of an asymptotic ex-
pansion for the function In a(k ) where a(k ) is the inverse of a
transmission coefficient.”* Nevertheless, there is not a
clear common prescription to find the relevant Poisson
bracket operation in the cases just mentioned. On the other
hand, in a series of papers'®'' Gel’fand and Dikii have devel-
oped a method for finding Liouville families which applies to
an infinite class of spectral problems including the Schro-
dinger one. Their method is strongly based on the properties
of the function R (k,x), defined as the restriction to the diag-
onal of a resolvent kernel from which a choice for a Poisson
bracket operation is suggested. But the proof of the involuti-

“Partially supported by the Junta de Energia Nuclear, Madrid.
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veness of the Liouville family requires a complicated proce-
dure involving a method for constructing Lax’s pairs.'?

In this article we propose a new method for obtaining
Liouville families which applies to the spectral problems
(1) in a very simple form. It uses both functions a(k ) and
R (k,x) and its strategy is based on the following properties:

(1) The gradient of the function In a(k ) admits a simple
expression in terms of R (k,x).

(2) The function R (k,x) satisfies a linear differential
equation which leads us to deduce another one which in-
volves the gradient of In a(k ) and two symplectic operators.

(3) This last equation implies that the coefficients of an
asymptotic expansion for In a(k ) form a family of functionals
with a twofold Hamiltonian structure.'* As an immediate
consequence, they generate a Liouville family.

Properties 1) and 2) are studied in Sec. 2. The asymptot-
ic expansion for In a(k ) and the twofold Hamiltonian struc-
ture are derived in part A of Sec. 3. In the rest of Sec. 3 a
recursion relation is deduced which enables one to find the
explicit form of the elements of the Liouville family and their
associated Hamiltonian evolution equations. As must be ex-
pected, for N = 1 the nonlinear evolution equations ob-
tained from our analysis are the well-known set’ of Hamil-
tonian systems associated with the Schrodinger equation.
The case N = 2 is particularly intersting since it provides the
Jaulent~-Miodek ' family of nonlinear evolution equations
for which a transformation identifying these equations with
those arising in the generalized Zakharov-Shabat spectral
problem has been found.'® Finally, Sec. 4 is devoted to inves-
tigating the evolution laws of the scattering data and it re-
veals that the simplicity of these laws is strongly related to
the existence of a twofold Hamiltonian structure for the
Liouville family.

2. TWO RELEVANT SYMPLECTIC STRUCTURES
A. The functions a(k) and Rk x)

Let ¥ be a functional space whose elements are of the
form

vo(x)
w=| |

Uy (%)
where v, :R—R (r = 0,..,N —1) are regular functions such
that they and their derivatives vanish sufficiently fast as
x— 4+ o.'® Every veV defines a spectral problem of the class
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(1.1), which may be written as
(— 0y +0(A)VvX) f= A",

where the following notational conventions have been
introduced

@.1

N1
oY= , o))=Y A7, x).  22)
. r=0
N -1
We define the Jost functions f, as the solutions of (2.1)
verifying

k=A""2 f,(kx) ~

X— + o

They satisfy the integral equations

Fo Gox) = e — f "I o)) ),
g (2.42)

eikx f ~ e~ ikx
s - .

X—r — o

(2.3)

fo (k)= 4 j S—"i‘%—‘ﬂ oA )@Y (k) d.
(2.4b)

Under the minimal condition »,€L '(R) (# = 0,...,N —1), the
method of successive approximations shows the existence
and the continuity of /, in the upper half-plane Im k>0 and
their analyticity in the region Im &k > 0. The proof is identical
to that required for the usual Schrodinger problem. In the
same way, one finds that for real k there are functions a(k )
and b (k) such that

[y ex)y=a(k)f* (kx)+b(k)f_ (kx) (2.5)
In addition, since the Wronskian W (f, g)=/J, g — gd..f of
two solutions of (2.1) is independent of x, it follows that the
function a(k ) can be defined as an analytic function in the
upper half-plane by means of the equation

atk) = (172 YW (f_ (kx), [, (kx)). (2.6)

It is possible to write down the asymptotic forms of f, for
x— — oo and f_ for x— + o in terms of ¢(k ), namely

Imk>0, f, (kx) ~ a(k)e™,

X — o

fokx) ~

X— + oo

a(k)e ™, 2.7

On the basis of these properties it is found that the ker-
nel of the resolvent operator ( — d,, + o(4 )v(x) —A"N) ™!
is given by

i
2ka(k)
)
2ka(k)
We shall denote by R (k,x) the restriction to the diagonal

x = y of this kernel, that is

Sy () (k)

x>y

R (kxp) = 28

S k) (Kx),

y>x.

_ i
R (k,x) = __—_2ka(k 5 fo ex)f_ (kx)

An elementary calculation shows that a quadratic
product f(4,x)g(4,x) of two solutions of Eq. (2.1) verifies

2.9
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(~ ¥+ S AU =200 @10)

where j(v,) are the operators
j(vr)Evrax + %vr,x M
This equation will play, as we shall see, a central role in all

the subsequent analysis. In particular, we observe the ac-
cording to (2.9) and (2.10) we have

(=160 + S AU R ) = 226, R (k)
r=0 2.11)

B. The Poisson bracket

In what follows the maps F:¥—C will be called func-
tionals and they will be denoted by F = F [v]. Let us define in
V the bilinear form

(v,w)EJj0 u(x)w(x) dx,

N —

v(x)w(x)= zlur(x)w,(x).

r=90
A functional Fis said to be differentiable at velV if there is a
unique N-component function, which will be denoted by
VF (v), such that"’

= (VF(v),w)

e=0

2 Flo+ ew] 2.12)
de

for all we W. In that case VF (v) is called the gradient of FeV.
In terms of the variational derivatives 8F /6v,{x), the gradi-
ent of F can be written as
SF /6vy(x)
VF(@)= : .
OF /8vy_ (x)
It is very easy to calculate VF (v) when Fis of the form

Fv] = J.w S, x)d, v, (x),....0%,(x),.)dx, (2.13)

where fis a polynomial depending on the functions v, and
their derivatives. Indeed, from (2.12) we have that the vari-
ational derivatives coincide with the Euler-Lagrange
operators

N
80, (x) _;( b adw,)

For the general case, in order to calculate gradients of func-
tionals it is helpful to use the following formula valid to first
order in the parameter ¢

sv=ew, OF[v]=F[v+ 6v] - F[v]= (VF@),0v). (2.19)

Let us return to our spectral problem (2.1) and let us
consider a(k ) as a functional defined on V. We prove

Proposition 2.1:

Vina(k ) = R (k,x)o(A)[i.e.,5lna(k )/8v,(x) = R (k,x)1"].
Proof:
By Eqs. (2.1) and (2.3) we have that under a variation dv

of the potential the corresponding variation of the Jost func-
tion f, verifies

(=0 +0(A)yv—AMSf, = —f, o(d)d,
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‘Sf+ (k»-x) ~ 0.

X— 4 oo

Thus we deduce

5, (kxg) = — fw dx R, (kxoxlf , (kX)o(A )B0),

(2.15)
where R , is the kernel
R _ 1 {x — x,)
+ (kxo,x) kalk) *)
X (S k) _ (kxo) — f, (kxolf (k.x)) .
(2.16)
Clearly, form (2.14) and (2.15) it follows that
Vi (kxo) = — R, (kxoX)f ;. (kX)o(4). (2.17)

If Im k > 0, then taking the limit x,—> — oo in this equation
and using (2.3) and (2.7) we find

e*Va(k) ~ e*™(i/2k Y _ (kx)f L, (kx)o(1).
Therefore
Vina(k) = Va(k )/atk) =if , (kx)f _ (kx)o(A)/2ka(k)

=R (k,x)a(1)
for Im k > 0. By the continuity of a(k Yand R (k,x)theresultis
also true if Imk>0. (QED)
Given veV, let us define the operators

oo . . A
—j() _](Uz)," —jlony 1) 9«
— 7 4 Ve
J(U2) //’ /// ,/axx/0
-, -
L = PR ~ 7 ,
/ /, // //
— oy 1) 9, ,// ,’/ R
3, 0o’ .-~ 0 ) (2.18)
-,
- %axxx +.](v()) 0 ° o ‘ 07
0 —Jj(v2) s '—j(vzv-l)/ax
0 — j(vs) s~ /70
7
MUE . ) 7 7 //'
0,7
. P s .
_j(vN—l) ax 0 .. 0
L o a, o - . J

It follows directly from (2.11) that
MR (kx)o(1) =AL,R (kx)o(d),

which, because of Proposition 2.1, allows us to conclude that
Proposition 2.2:
M, Vina(k) = A-L,Vina(k). .19
Suppose given for every ve¥ a linear operator J, acting

on N-component functions and let us define for any pair of
functionals F,(i = 1,2) the new functional

{F,F) [v]=(VF,),J,-VFv)).
Clearly {,] is bilinear and satisfies
{F\,FyFs} = [F,Fy}-Fs + F{F,F3}.

It is said that {,} is a Poisson bracket if it has the following
two properties

(2.20)

2344 J. Math. Phys., Vol. 21, No. 9, September 1980

D {FI’FZ} = - {FZ’FI}’

2) {Fl’{Fz’Fs}} + {FzyiFa’Fln + {Fa,[Fan}} =0
(Jacobi identity).

In this case J, is called a symplectic field of operators'® and
the pair (V,J,) is said to be a phase space.

Proposition 2.3: L, and M, are symplectic fields of
operators.

Proof:

Since both L, and M,, are antisymmetric operators with
respect to the bilinear form (,), then (2.20) implies that
property (1) is verified by the operations {,} associated with
L, and M,. The proof that property (2) is also satisfied re-
quires a nontrivial analysis and therefore it is given apart in
Appendix A. (QED)

By a Liouville family in a phase space (V,J,) we shall
mean an infinite dimensional linear space of functionals of
the form (2.13) such that the Poisson bracket of any two of
them vanishes identically. In the next section it will be
showed how Eq. (2.19) leads us to obtain a Liouville family.

3. LIOUVILLE FAMILY AND HAMILTONIAN SYSTEMS
A. Twofold Hamiltonian systems

Let J, be a symplectic field of operators and let us con-
sider the phase space (V,J,). By a Hamiltonian system (V,J,)
we shall mean an evolution equation which can be written as

dv=J,VH (), 3.1
where H is a functional of the form (2.13). In this case H is
called the Hamiltonian functional of this evolution equation

and one finds easily from (2.12) and (3.1) that the time evolu-
tion of an arbitrary functional F = F[v] verifies

a,F={FH}, (3.2)

where {,] is the Poisson bracket in (V,J,). In particular, F
will be a constant of the motion if and only if {F,H }{ =0.
We are now going to derive a Liouville family in both
phase spaces (V,L,) and (VM,).
Theorem 3.1: The function In a(k ) admits an asymptotic
expansion of the form

Inak) = (/24 S H, /A" Argk=m/2, (3.3)
n=0

such that the coefficients H, are functionals of the form
(2.13) which verify

L, VH, =M, VH,
for all n.

Proof:

In Appendix B it is proved that the function R (k,x),
defined in (2.9), has an asymptotic expansion

3.4)

R (k%) = S R,/A"Ry= LArgk =7/2,
n=0
(3.5)

where the coefficients R, are polynomials depending on v,
(r =0,...,N —1) and their derivatives such that R, —0 as
|x|— 0 for n> 0. On the other hand, as consequence of (2.1)
and (2.9) one finds

(3, (a(A)v —AM))R

i
MN/Z
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i

= 2Jm(k)a,((f_ Sy —3f_if L)

Then, taking Im & > 0 and using (2.3) and (2.7), we deduce
by integrating that

8,1na = f dx (i%li”“

(T - wa R ®n). 69

r=1
By introducing (3.5) into (3.6) we conclude that In ¢ admits
an asymptotic expansion of the form (3.3) with the coeffi-
cients H, given by

H,,:——-—l-——f dx
W/2)—n—1J_.
N-1,
x( 3 rv,R,,+,+,_N——NR,,+,) G.7)
r=N—(r+1D

where the sum in the integrand is extended to all positive »
between N — (n +1) and N —1. Finally, if we introduce
(3.3) in the identity (2.19) and we identify powers of A in the
resulting equation, then (3.4) follows at once. (QED)

It is interesting and important to analyze the relation
(3.4) satisfied by the functionals H,. According to (3.4) we
conclude that the evolution equations

dv=L, VH, . , =M, VH, (3.8)
have a twofold Hamiltonian structure.'® That is, they are
Hamiltonian systems in both phase spaces (V,L,) and
(V.M,). This implies the following fundamental property.

Theorem 3.2: Let {,}, and {,],, be the Poisson brackets
associated with the phase spaces (V,L,) and (V. M, ), respec-
tively. Then, we have

{Hn’Hm }L = {Hn’Hm }M =0
for all n,m>0.

Proof :

To prove this we follow a method due to F. Magri."?
Suppose n < m, then

{Hn ’Hm }L = (VH,,,LU VHm ) = (VHn’Mvam —1 >

= { H n ’Hm -1 } M

= —(M,VH,VH, )

= - (LUVHn+l ’VHrn—l )

= {Hn+l Ho, 1 }e
Therefore, by iterating we find
iHner }L = {Hn’Hm —1 }M = {Hn +2

== [Hnan }Ls

which, from the skew symmetry of the Poisson bracket, im-
plies (3.9). (QED)

Let us denote by .% the linear space of functionals gen-
erated by the family {H, ,n>0]}

(3.9)

m—Z}L

M
F= [ S ¢ H, ;cmeR,M>o] .

m=20

(3.10)

As a consequence of (3.9) we conclude that .% is a Liouville
family. Moreover, from (3.2) we have

Theorem 3.3: All the elements of F are constants of
motion for each Hamiltonian system 8,v = L,-VH with Ha-
miltonian He% .
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In this way, by means of the properties of In a(k ) and
R (k,x), we have been able to deduce an infinite family of
Hamiltonian systems with a common infinite set of con-
stants of motion.

B. Recursion relations and evolution equations

The equation (3.7) provides us an expression of the
functionals H,, in terms of the coefficients R,, of the asymp-
totic expansion of R (k,x). But the method used to prove (3.5)
is not appropriate as a practical rule to find the explicit form
of such coefficients. Nevertheless, we are able to do it by
means of a consequence of (2.11). Indeed, substituting (3.5)
into (2.11) and identifying equal powers of A, we obtain the
recusion relation

Ro=1,0,R, = 3 jox_JR,_,.n=1..N—1,
r=1

(3.11)
N -1
IRy =(=100x +jWIR, + Y j, )R, n>0.

r=1
It allows us to calculate the functionals A, by using (3.7).
In order to get the explicit form of the Hamiltonian
systems defined by the elements of .% it is not necessary to
know the functionals H,. To see it, let us note that inserting
the asymptotic expansion (3.3) and (3.5) into the equation
Vina(k ) = R (kx)o(A ) we obtain

VH, = n=0,l1,.,N—1,
(3.12)
Rn +1
R
VH, ., = ".” n>0.
Rn + N
In particular, from (2.18) and (3.11) we deduce
LVHy=LVH, ==L VH,_, =0 (3.13)
and
vO,x
L, VHy, =y, =1} 3.149)

VN _1x

At this point we notice that, in view of the polynomial nature
of the coefficients R,, and the form of L, the components of
VH, and L VH, are elements of the polynomial ring 4 gen-
erated by the variables d7v,(n >0, = 0,1,...,N —1). In the
subset Rand, of 4 it is possible to give a convenient meaning
to the operator d; . Ideed, given feRand, there is a unique
geA verifying f = J, g and such that g vanishes when all the
variables d;v, (n>0,7,0,...,N —1) are set up equal to zero.
This is what we mean by 4! in the following. Consider the
operator
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(020 1 (~ 40 +i3z ')
] Jwpa,’
K=|1v | J)3 (3.15)
! :
L L JVno)0c! J
It is elementary to verify that
M,=K,L,. (3.16)

Then (3.4) and (3.14) lead to

L,VHy ,, =Mu'VHN+n—1 =K,(L,-VHy, ,_1)
=K2LVHy,, , =-=K!L, VHy (3.17)
=1K7d,u, n>O0.

Therefore, Egs. (3.13) and (3.17) enable us to conclude that
the nontrivial Hamiltonian systems generated by the family
of functionals { H,,,m >0} are given by

M M
a,U =LU'V(chHN+n)=MU'V(zanN+n-l)

n=20 n=0
— 12 (K,)3,0, (3.18)

where {2 denotes the polynomial function
QA)=ZM_ c A"

For instance, the choice£2 (1 ) = 24 yields the evolution
equation

dvy= — Wy e FUMN_x T+ %DN—-I Uo,xs
v, =v,_ 1, +VUy_ 1, +WN_10,, (3.19)
r=1.N-1, ’
AUy 1 =VUn_1x TN VN 1x-

We end this section with the application of our analysis
to the cases N = 1,2.

(i) Consider N = 1; then the spectral problem (2.1) re-
duces to the Schrodinger eigenvalue problem

(=9 +vN =4S, (3.20)
with an scalar potential v. According to (3.18), the associat-
ed evolution equations are given by
30 =42 (K0, K, = (~ 1, +03, + W37 (21

They form the well-known family of nonlinear equations re-
lated to the Schrodinger equation.'® In particular, for the
choice £2 (A } = 84 we obtain

dv= —v,, + 6w,
which is the KdV equation. From (2.18) we have that the
symplectic fields which enable us to write this family in Ha-
miltonian form are

L,=4d, M,=—-13,. +vd, +,. (3.22)

To find the infinite set of constants of motion {H,,n>0] we
note that (3.7) and (3.11) become

H, 2 J R, ., dx.

= 3.23
2n 41 ( )

and
RO = 1’ aan +1 = ( - %axxx + vax + %Ux)Rn’ (3'24)
respectively. Thus, the first few R, are found to be
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Ri=, Ry=Y—u, +3?),
Ry = L4(3v — 10w, —5v% +100°%)
and they lead us to

Hozf v dx, H,:f W dx,

H,= j @2 +20%) dx.

(ii) We now take N = 2, then (2.1) reduces to
(= Oxx +0o(x) + Av,(x)) f= A% (3.25)

This spectral problem has been extensively studied by Jau-
lent and Jean." In the radial case?® (x>0) it applies to scat-
tering problems in absorbing media.?’ From (3.18) we see
that its associated evolution equations are
1 1 4 -1
90 =12 (K, K, = (94—(- J‘z?”i g -’;(39)3‘--) :
1 ‘ .; (Ul)ax !
(3.26)

They coincide with the family of nonlinear equations found
by Jaulent and Miodek'* by applying techniques of inverse
scattering transform to (3.25). This is a very important fam-
ily of evolution equations since, as has been shown by Jaulent
and Miodek,'® there is a map v—u which transforms these
equations into the family of evolution equations associated
with the generalized Zakharov-Shabat spectral problem

(% )= e 1= (5.

As is well known,” this family includes several important
equations such as the modified KdV, the Sine-Gordon and
the nonlinear Schrodinger ones.

As a consequence of our analysis we conclude that the
Jaulent-Miodek equations are Hamiltonian systems with re-
spect to the following symplectic fields:

—Jj) 4,
Lu = ( ax O)»

( - };axxx +j(UO) 0 )
0 a.)

It is worth mentioning that starting from this Hamiltonian
formulation one can prove®? that the Jaulent-Miodek trans-
formation is a canonical map.

By (3.7) and (3.11) it follows that

(3.27)

(3.28)
M =

u

1 (==}
H,, = ———f @R, ., —v,R,,)dx, (3.29)
n+1J_.
where
R, =y,

(3.30)
a)(Rn+2 = ( - éaxxx +](v0))Rn +j(UI)Rn+l M

Thus, the first few H, are given by

H, = j Qvi +v)dx, H,= f (i + Suepy) dx,

o

o0
2 4 2 2
H, :f (=, — FYi. + 201 v+ iv5) dx.
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4. SCATTERING DATA AND COMPLETE
INTEGRABILITY

Given a Hamiltonian system with a finite number n of
degrees of freedom, if we know n constants of motion H;

(i = 1,...,n) such that {H,,H;} = O for all ;, j, then we can
find a set of coordinates in the phase space for which Hamil-
ton equations take a trivially integrable form. This is essen-
tially the content of Liouville’s Theorem in classical Hamil-
tonian mechanics.’ There are reasons to think that this result
is also true, in some sense, for infinite—dimensional Hamil-
tonian system having an infinite number of functionals such
that the Poisson bracket of any two of them vanishes identi-
cally. In this later context, the role of the set of coordinates in
phase space for which Hamilton equations are trivially inte-
grable seems to be played by the scattering data of the associ-
ated spectral probelm, when it exists. The task of finding a
set of scattering data from which the potential functions of
spectral problems can be univocally determined is called the
inverse scattering problem. The solution of this problem is
well known for the cases N = 1,2 of Eq. (2.1)"*** and it can
be extended to cover the general case.?*

In this section we shall show how the methods of Ha-
miltonian formalism may be applied in order to find the evo-
lution law of the scattering data of Eq. (2.1) under the evolu-
tion equations (3.18). We look for the set of scattering data
(k,,b,,a(k),b (k)) where k(I = 1,2,...)denote the zeros of the
function a(k ) in the region Im & > 0, the parameters b, are
defined by /', (k,,x) = b,-f_ (k;,x) and the function b (k)
was defined in (2.5).

Proposition 4.1: The following equations are satisfied:

M, Vk, = A,L Vk, CAY)
(M, Vf, (kxohw) =A (L, Vf (kxohw) + (I, w)xo),
4.2)
where /|, is the operator
1, =Y, (k2)0, — 101, (k). 43)

Proof:

Let k&, be a zero of a(k ) such that Imk; > 0, then from
(2.7) we have that /', (k,,x) and f_ (k,,x) must be propor-
tional and therefore, by the boundary conditions (2.3), we
deduce that both functions decrease exponentially as
|x|— o0 . Moreover, we have

(=0 + 0@ )v@) f, (ki) = A1f . (ky ),

where A,=k 7M(0 < Argd, < 27/n). Then, under a variation
6v of the potential, we deduce

(=0, +ovbf  +(30V64, +0abv)f,
=A7Sf, + NAY "84, f, . 4.5)
Multiplying by f, (k,,x) and integrating, it implies that
84, =C [ £, GexPotd,you) d,

where

o= ([t — a0 s, karas)

“44

Therefore
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Vk, = iNA 127WVA, = (4N i lcl)f+ (kl)x)za('il)y(4 6
and from Eq. (2.10) we deduce (4.1) at once. In what con-
cerns (4.2), let us observe the form (2.17) of Vf, and the
equation satisfied by R

(= 8,y + TA)0x) — A MR, (hxox) = 8(x — x,).
This equation and (2.1) imply that the product
R, (kxox)f, (kx) verifies

N—-1
( - ‘ltaxxx + z A’ 7(U,))R +f+
r=0

=AM, R, f,)+13BA.f, +f.3)0(x—x).(4.7)
The rest of the proof is an immediate consequence of (4.7)
and (2.17). QED

Theorem 4.1: If v = v(x) evolves in time according to
Eq. (3.18), then the evolution law of the scattering data is
given by

k,(t) = k,(0), (4.82a)
b,(t) = b,(0)exp( — ik, 2 (A,)t), (4.8b)
a(k,t) = a(k,0), (4.8¢)
b (k,t) = b (k,0)exp( — ikf2 (A )t). (4.8d)

Proof: Let us begin by calculating k,(z ); from Egs. (3.4),
(3.13), and (4.1) we have

{k[,HN+n }L = (Vkl’LuVHN+n> = (VkI)MUVHN+n—l >

= - (Mqul’VHN+n—1 ) =Al(Vkl7LuVHN+n~1 )
4.9)
=/11{k1rHN+n—1 }1_ ="‘=/{?+1{k1yH1v71 }L

=A 7YYk, L,VHy_, ) =4[ (Vk,,0) =0.

Then using (3.2) we deduce (4.8a). In the same form, with
the help of (3.4), (3.12), and (4.2) it follows that

{f+ (er)’HN+n}L =4 {f+ (k’x)’HN+n-1 }L _I+ R,
4.10)

— =AM, GRHY, 1, S AR, .
On the other hand, (2.17), (3.14), and (4.7) imply
[f+ (k’x)’HN}
=~ R xS, kDoR)9,00)

=4[ dya, (R, (kxn)f, () +10. 1, (1)
- 4.11)
= 10.f ;. (kx) — ikf . (kX))

Then, since R,,—0 (m > 0) as x— — «, we have

Lo G Hyn} = AOS , Gox) = kT, ()
4.12)

Now if we take we take k = k, and we introduce into (4.12)
the asymptotic behavior

[y (kisx) =b,f_ (k;,.x) T ble_k"’

— — oo

then it follows that

§b,Hy .} = — ik, ATb,. 4.13)
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In the same form, taking k€R and using

filex) ~ alk )e™* + b (ke =",

— —

Eq. (4.12) yields

fa(k),Hy,,} =0, {b(k)Hy,,}= —ikA"b(k).

(4.14)

From (4.13), (4.14), and (3.2) the rest of the proof follows at
once. QED

APPENDIX A

In this Appendix we shall complete the proof of Propo-
sition 2.3 by showing that the operations {,] associated with
L, and M, satisfy the Jacobi identity. In terms of the opera-
tor J, of (2.20) this identity can be written as'?

(@ s, €)Y + (d [ (£J,9))
+ (&J (@, ¥)) =0 (A))
for all g,i),£€V, where J |, denotes the bilinear operator

d
J,:(,)VXV—»V, J::(¢,¢)= T Yo+ ey®
df €e=0

Clearly, in order to satisfy (A1) it is sufficient to prove that
for all g,4,£€V the function

(@ [¥IE),=@J (¥J.5)

+ ¢S (@) + 6T @, ¥) (A3)
is the derivative with respect to x of a function which vanish-
es at infinity.

From (2.18) we observe that M, is a direct sum of two
operators; the first one, given by — id,,, + j(v) is well
known as a symplectic operator in the analysis of the KdV
equation'® and the second one is of the form L; with & being
an (N —1)-component function. Therefore, all we have to
prove is that L, verifies (A3). To do it, we start by calculat-
ing L |, which an immediate application of (A 2) shows to be

i) J@) - Jy-) 0

(A2)

J@) s 270
' s - 7”7 .
L'@¥)= —Ny Nyy=| + - _~ - .
JWn_1) PR
- 7
0 - 0 /l . . e 0
(A4)

Then, by means of a straightforward computation one finds

eLiWL.E)
= 2

¢r [vr +s+qg+2 ('/Js,xé-q,x + %'/Isgq,xx)
r+s+qg<N—1

+ ivr+:+ q+2.x (¢s,x§q,x + %'//s gq,x)

+‘%Ur+s+q+2.xx¢s§q]’ (AS)
where we denote vy = — 1. This leads us to the expression
(¢|¢I§)L.= ax z (ivr+s+q+26x
r+s+q<iN—1
+ %vr+s+q+2,x)¢r¢:§q] ’ (A6)

which proves that L, verifies (A1).
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APPENDIX B

We give here the derivation of the asymptotic expan-
sion (3.5) for the function R (k,x). Our proof will be based on
a method applied to the usual Schrédinger problem by Gel-
’fand and Dikii.'® We begin by considering the Born asymp-
totic series for the kernel R (k,x,y) of the resolvent operator
of (2.1). Its restriction to the diagonal x = y gives

R (kx) = 2 Ry (k%) (B1)

Ryex) = == (1) [explik (= 3] + b, — 5]
ot frw —xDII] o)ue)ds )

Then, we have

R, (kx) = ;( — i)M Nil in +...+rMI(k)
M 2k 2k v Fpy =10 o
(B3)
where
TR, = [erpli(x =+ + iy = 2D)]
M
X H v, (x,) dx,. (B4)
=1
Let us take k such that
Then, by introducing the charge of variables
x)—>0), 1= —ik(x —x), (B6)
and the Taylor series
0 1 "
0, ()= 3 — 0, X0 —x)", (B7)
nm=0 N;!
the integrals (B4) take the asymptotic form
f \M =3 i \n, + - +n
o (S
©.....= () 2 (3 e
M
X [Lvrom, @), (BS)
=1
where
Cnrny= | €XP[ — (Imi| + 172 — M| + o + 70, D]
M
X [[ ()~ 'n} dm,. (B9)
I=1
From (B3) and (B8) we have
i 1
RM(k’x) = 4 N2 (u N)M
X i A [ SR o Y
Myt =0 1y peeey ry=0
) n 4.+ nyy M
x (i m) e 1] 2 ). (BIO
By making 7,— — 7, in (B9) it follows that
vy = (=D, (B11)
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Therefore, only the terms for which n, 4- ... + n,, is even
contribute to (B10). So we obtain an expansion for R, (k,x)
of the form

i & .
RM(k,x)= anoP"/A«M+ > (B12)
where the coefficients P, are polynomials depending on the
variables v, , , which vanish when these variables are set
equal to zero. In this way, from (B1) and (B 12) the asymp-
totic expansion (3.5) follows.
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Gauge invariance and the Helmholtz conditions

Robert Cawley

Naval Surface Weapons Center White Oak, Silver Spring, Maryland 26910

(Received 22 October 1979; accepted for publication 6 June 1980)

In a previous work I have outlined a new formalism of theoretical mechanics, extending the
traditional subject in a new way to elementary systems whose second-order dynamical equations
do not satisfy the classical Helmholtz conditions for the existence of a Lagrange function. In the
present paper I determine the role of a new gauge invariance (‘“‘dynamical” gauge invariance),
satisfied by the equations of motion of systems covered by the formalism, and the relationship this
bears to the Helmholtz conditions. A certain subgroup, of “kinematic” gauge transformations, is
singled out: the kinematic gauge transformations correspond for the Lorentz force law to the
usual gauge transformation of electromagnetism, general dynamical gaugé transformations
correspond to minimal substitutions. An analogue for the nonalbelian gauge force law is discussed
briefly. An implication of the present work is the result, in a sense made explicit within, that (the
usual) gauge invariance is an intrinsic property of classical Hamiltonian systems.

1. INTRODUCTION

Gauge theories enjoy wide application and success as
models for elementary particle and radiation processes; and,
from the standpoint of quantum field theory, their renorma-
lizability makes them especially attractive. Equally, from
the same standpoint, it appears either strange or at least arbi-
trary that nature should grant such serendipity as to make
these so successful for us, and ubiquitous, as they have been.
On the other hand, an old discovery of Jauch (see below)
suggests another viewpoint, that gauge invariance, in some
sense, may be “implicit” already elsewhere in our basic theo-
retical formalism. In the present paper I present some devel-
opments of classical theoretical mechanics which suggest the
same sort of thing.

In a previous work' I have presented outlines of a gener-
alized classical Hamilton-Lagrange mechanics, for applica-
tion to systems whose second-order equations of motion
need not satisfy the Helmholtz conditions for existence of a
Lagrangian. Systems for the nonHelmholtz case are referred
to more commonly as nonHamiltonian, and typically they
are open systems; some simple examples are a damped oscil-
lator, the multivibrator (van der Pol equation), and a radiat-
ing charge.

There are other approaches to Lagrange-Hamiiton for-
mulations for equations of open systems. The best known,
but which suffers from difficulties of physical interpretation
that stem from the failure of the Hamiltonian to admit an
interpretation as system energy, uses integrating factors to
the equations of motion.>> Another proposal is based upon a
nonLie algebraic (Lie admissible) time evolution law for the
Hamiltonian variables.® And E.H Kerner has introduced a
“canonicalization” of first order systems for biological ap-
plications.® The methods introduced by H. Dekker® appear
to bear the closest relationship to mine, however, despite
apparent dissimilarities, and differences of motivation. Fur-
ther references, more detailed physical discussion, and my
motivation are given in Ref. 1. Nevertheless, I will add a few
further remarks here to indicate some aspects of the direc-
tion of my efforts.
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As the physically useful form of theoretical mechanics
has been restricted to closed systems, elementary (i.e. ““in-
trinsically macroscopic™) system representation of nonequi-
librium processes has been able to draw only indirectly or
not at all from methods grounded in Hamiltonian theory.
Some of the kinds of problems of physical interest for which
this shortcoming seems to me likely to be limiting to our
capabilities for theoretical modeling, and our basic under-
standing, are collective nonequilibrium processes in plas-
mas, macroscopic dissipation phenomena in certain nuclear
processes (fission, and heavy ion scattering at high energies),
and “dressing” (renormalization) effects in radiation and
fundamental particle processes.

Another kind of problem to which the present formal-
ism of mechanics appears likely to find useful application is
in the construction of guiding center models for plasma ap-
plications, where Hamiltonian formulations are desirable,
along with proper physical interpretation.’

The proposed generalization for theoretical mechanics
applies presently to systems of equations having the form
Son(x%,8) — f1,(x,%,6) =0, n = 1 to N [Egs. (2.8)], subject
only to the restriction given by [(2.11)]. I plan later to extend
it to cover more general forms, such as G, (x,x,x,¢ ) = 0, with
the G, arbitrary. In this paper I continue the development of
the present scheme, and as a by-product obtain general re-
sults concerning gauge invariance in classical mechanics.
Although the main purpose here is to carry forward the de-
velopment of the new formalism by securing its relationship
to the old, I wish also to draw attention to the rather general
character of the role played by gauge transformations in
classical theory, not obvious heretofore but which emerges
naturally from the new scheme. In addition, the classical
analogue of Jauch’s result, referred to in the first paragraph,
is immediate in the present context, and is set into a wider,
and changed perspective.

Jauch showed® that Galilei invariance in nonrelativistic
quantum mechanics, implemented as a symmetry in the
standard way, by projective representations, ¢, of the inho-
mogeneous Galilei group assumed to satisfy a Schrodinger
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equation, uniquely fixes the Hamiltonian of an elementary
system to the form

1
H= —(p—A‘+V, 1.1
2 (p— A+ ¢B))
where A and V are arbitrary functions of the position and the
time, i is the mass (parameter for the projective representa-
tion) and p is the momentum operator. As Eq. (1.1) is invar-
iant to the phase transformation of ¢,

v—explid (x,t))-¢, (1.2)
if also we transform A and V,
A>A+ Ve, VoV --3d¢ /0, (1.3)

Jauch concluded that Galilei invariance may be said to imply
gauge invariance—a result having nothing to do with
electromagnetism.

In the example of electromagnetism it is not hard to
show that the effect of adding the time derivative of a func-
tion of the position and the time to the Lagrangian is equiv-
alent to a guage transformation. This result cannot be fur-
ther generalized without some more general notion of gauge
transformations for other classes of examples. On the other
hand, the Helmholtz conditions assure the general form, Eq.
(2.8), for the equations of motion—for this is the form of the
Euler-Lagrange equations—and as we shall see this form is
invariant to a large group of transformations (dynamical
gauge group) containing the usual gauge transformations as
a subgroup (kinematic, or integrable subgroup). Now the
formalism introduced in Ref. 1 extends, except for the mild
restriction (2.11) noted earlier, to any system of the form,
Egs. (2.8), including, of course, the subclass for the Helm-
holtz case. The integrable (gauge) subgroup then is realized
as an invariance group for the equations of motion whenever
a Lagrangian exists in the sense of Helmholtz. In addition,
the above result for the Lorentz force of electromagnetism,
of the equivalence of gauge transformations to the addition
of time derivatives to the Lagrangian, becomes completely
general. These results have nothing to do with either electro-
magnetism or with Galilei invariance, but are simply a fea-
ture of the form of Egs. (2.8). So, instead, the matter may be
put this way when the context is the formalism of Ref. 1: (the
usual, i.e. kinematic) gauge invariance is a consequence of
the Helmholtz conditions. In other words, gauge invariance
is an intrinsic property of the “usual > domain of classical
theoretical mechanics, of the existence of a Lagrangian, and
therewith, of a Hamiltonian.

There is a non abelian field analog to these results and
which I discuss briefly in Sec. 3.

In the present work I will derive results concerning
“principal part” Lagrange and Hamilton functions, L and
H, objects which arise in the generalized formalism. These
quantities, as I shall show, are the same as the usual La-
grange and Hamilton functions of mechanics when the sys-
tem satisfies the Helmholtz conditions (and for choice of an
“integrable dynamical gauge”.) In addition, every system
has a “universal” Lagrangian and Hamiltonian, .¥ and #°, s

defined over “doubled” spaces of twice the normal number
of dimensions; thus, the “universal” phase space of an N
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dimensional system is 4¥-dimensional, etc. The system mo-
tion is executed on a (universal) constraint hypersurface of
half this number of dimensions, and this is the old configura-
tion space, or phase space, of the proper dimensionality. The
generalized structure for non-Helmholtz systems over the
constraint submanifold(s) is then determined by the usual
(constrained) formalism over the big space(s).

With these orienting remarks I turn now to the business
of the paper. In Sec. 2 I give an overview (and brief review) of
the new mechanics, summarizing key results of Ref. 1, and
present a few new results (including, incidentally, a curious
generalization of the Legendre transformation); in Sec. 3 1
establish necessary and sufficient conditions on the func-
tions, £, (x,X,t), f,(x%,t ) in Egs. (2.8) for the Helmholtz
conditions to be met; in Sec 4 1 establish the correspondences
of gauge transformations to canonical transformations for
the new formalism; in Sec. 5 I establish the kinematic gauge
invariance of integrability for the universal Hamiltonian;
and in Sec. 6 I conclude with a discussion of the significance
of the results derived in the paper.

2. OVERVIEW OF THE FORMALISM

The universal Lagrangian and Hamiltonian .¥ and 5%,
in the central coordinates’ for the problem are

Lfi XX 2+ £, (x,%,2) 2, Q2.1
H=F,,(x,p,,t) 2"+ F3(x, p,,t) p. 2.2)

where the equality symbol denotes strong equality in the
sense of Dirac.’>'? I have introduced a slight change of nota-
tion from that previously used: F,, has been replaced by
F3x,byx" etc., and the Einstein summation convention is
introduced for repeated upper and lower indices.

The transformation to principal coordinates' is given
by the equations

§M=x"+14z", (2.32)
Pn =Py +4p,., (2.3b)
§r=x"—1z", (2.3c)
—Pn=Pp =D, (2.3d)

and the principal decomposition forms for . and 5% are
Ll (EEN)—LE £ )+ 8L EEEE L), (24
H~H(EptY—H(E,—p' )+ 0H(&pE’,—p't).

2.5)
The universal constraints of the canonical formalism are
z" =0, (2.6a)
Po=0, (2.6b)
in central coordinates, and
E"—EmM=6£"=0, (2.7a)
Pn +Pr=0p, =0, (2.70)

in principal coordinates.

The significance of the quantities appearing in the fore-
going list of equations is as follows. The Euler-Lagrange
equations for the system motion are

Fonlx3t) — fi,(x%2) =0, (2.8)
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so that the f;, are “momenta” and the f,, can be interpreted
as “forces.” Passage to the Hamiltonian is accomplished by
substituting into the right side of

Fln (x’pz7t) = _.fln(x’x’t) (2‘9a)
for the x *, the solution to the system of equations
3.7
pz"=__— n\X ’t ’ 210
pY Son(xX,t) (2.10)
viz.,
x"= Fi(x,p.t), (2.9b)

and the last equation itself, to realize Eq. (2.2). These steps
can always be carried out in the standard case, defined as
that for which Eqgs. (2.8) can be solved for the accelerations,
viz.
det|| df,, /9x™|| #0, (2.11)
since the latter condition is that for the invertibility of Egs.
(2.10). The Lagrangian, Eq. (2.1), results from the Hamil-
tonian, Eq. (2.2), by carrying out the inverse Legendre trans-
formation using
. OHF
X =
dp
to eliminate the p_. in favor of the X ". The solution of the
system, Eqgs. (2.12), obviously is
P = fa(x%,0), (2.13)
and Eq. (2.1) follows immediately upon substituting (2.13)
and (2.9a) into

L~p . X" +p.i"—H

= Fi(x,p.t), @.12)

X"

~—F, (x,p,t)z, +p,. 2 (2.14)
Evidently, we need to have
det|| dF3/dp,.|| #0; 2.15)

but this is equivalent simply to the (tacit) assumption that
the left-hand side of (2.11) be finite. The remarkable symme-
try between Lagrangian and Hamiltonian forms goes even
further.

Since the decompositions of .#” and 5 can be written
down arbitrarily and hence independently, in the general
case, it is evident that L and H need not be connected by
Lengendre transformation. Nonetheless, if we assume a de-
composition for .#, there is a natural corresponding decom-
position of 5, in which

H=H, =p, £"—L(&£1).

However, this is a generalized Legendre transformation
from L induced by the (ordinary) transformation from .Z,
for the velocities are to be eliminated by means of

< _ JL 4967

n — > ~ - v ’

g o5 OE" le—ge—¢
which differs from the normal case in the presence of the
second term of the right-hand member. When this is done,
Eq. (2.5) results, H being given by (2.16) and the residual
part by

H ~—87L.

(2.16)

(2.17)

(2.18)
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Furthermore, the right side of Eq. (2.17) must reduce to
Jan(x,%,1), so the uniqueness of the transformation, i.e., the
uniqueness of H, , is guaranteed by (2.11), given the f;,,.

Conversely, if a principal decomposition is assumed for
#°, there is a natural, induced, decomposition for .%, de-
fined from the inverse transformations. In exactly the man-
ner of the ordinary Legendre transformation, the inverse is
realized in

L=L,=£"p, —H(&pi), @.19)
with the p, to be eliminated by inverting the system

: ox% _ oH 387

= 4+ % 2.20)

pn apn apn E'=&—-p=p

It is easy to show from the canonical equations that the right
side of Eq. (2.20) is F5( §, p,t). So Eq. (2.20) is the same as
Eq. (2.12) and the solution is given by (2.10) or (2.17). Evi-
dently, Eq. (2.19) is supplemented by the analogue of Eq.
(2.18), viz.

8L ~ —857. (2.21)

Equations (2.17) and (2.20) do not depend upon the
choice of principal decomposition employed to express
them, and their solutions for the elimination of the active
variables of the transformation are independent of this
choice. Consequently, the relationship of L, and H, for any
choice of principal decomposition (of either L or H), de-
pends upon the function set, { f;,( £,£,t)}, or its “inverse”,
{F5(&, pit)}. One can see the full situation in the diagram

H, =H[L{f) Ly, =L[H(F}}]. (@22

Thus a principal decomposition of L induces a principal
decomposition of H in a natural way and vice versa. I shall
assume henceforth that L and H in Egs. (2.4) and (2.5) are
connected by generalized Legendre transformation, and
drop the identifying subscripts from L, and H, .

An immediate corollary of the foregoing is that if either
of L or 5H vanishes, so does the other, by Eq. (2.18) or Eq.
(2.21).

3. HELMHOLTZ CONDITIONS

Given a set of functions, { G, }, to be used to express the
motion of a system, viz.

G, (x,%%t) =0,
a Lagrange function® L,

n=1,.,N, 3.1
= L, (x,%,t ) having the property,

L oL
d 9Ly 7= n=1,.,N, (3.2)
dt ox" ax”"

exists if and only if the functions G, satisfy the identities,’
96, = G, 3.3)
ax" ax"
6G,, o = 4 ( ) , (34
ax" ox"  dt
G,

aG, aG,, _ 1d (3G 19 ) 3.5
ox™ ax" 2 dt \gx™ ax"

These are the Helmholtz conditions for the second-order
system, Egs. (3.1).
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Equations (3.3) and (3.4) require the G, to be linear
functions of the X ", so we may write

G,(x,%%,t) = G,, (x.%1) X" + g, (x X, ) . (3.6
In the standard case, for which the Hamiltonian formalism
from L, is free from constraints, the G,,,, satisfy the condi-
tion of nonvanishing determinant,

det||G,,,, (x.x,)|| #0 . G.7
The Helmholtz conditions can be reexpressed as restrictions
of the G, (x,%,t) and the g, (x,%,t ) by substituting (3.6).
Parallelling Havas,” I write these as

G,,=G,, , (3.72)
G = G , (3.70)
ax! ax"
og, 0g., (.k J a)

—={x—+ =] (G,n +G..)> 3.7¢
axm + ax" 3x"+ ot ( ) (3.70)
3G, 3G,

3.7d)

=i a ( n_ agl)
ax' ax" 2 g \ax o)’

98, Ogn =L(xk_‘9_+ 1)(8& B agm)
x™ " 2\ gxk  at)\axm %,/

(3.7¢)

Equations (3.7a)~(3.7¢) are necessary and sufficient
conditions for existence of a classical Lagrange function, in
the usual sense, and I shall refer to systems for which they
are satisfied as the Helmholtz case. Note that (3.7b) implies
the existence of a function ¥,, (x) for every m, such that G,

= dy,,/dx". From the symmetry expressed in (3.7a), the
Helmholtz conditions therefore guarantee the form, Eq. (3.8)
below, assumed for the G, in the present theory.

The present formalism is defined for systems of equa-
tions for which

G, (x %5t ) = frn (e X,t) — fia (), (3.8)

which, expanded, assumes the form of Egs. (3.6), with the
unique identifications:

aon
G,=—-—, 39
=t (3.9)
g d d
g,.s(x'-&—,— E)fz,, —fin . ¢.10)

The restriction to the standard case reduces to (2.11) but the
Sinf>n Otherwise are arbitrary. The 2NV functions are not
uniquely specified by the system, Eqgs. (3.8), however, but
only up to equivalence under the replacements,

-fln—’f;n =.f1n + ;d;An(x)t)) (3.113)
Son=F 5 =Fon +A4,(x,2), (3.11b)

where the N functions, 4, (x,t ), are arbitrary and mutually
independent. These “dynamical gauge transformations”
form a group, D, and comprise a wider class than the usual
gauge transformations of the potentials for the electromag-
netic field, which here correspond to an “integrable” sub-
group, as we shall see.

I define functions, 4,,,,, B,,,, and C,,, , whose vanishing
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expresses integrability relations for the £;,, f;,- These quanti-
ties and the integrability relations, are

nm= 8',1" - a.f]m =L, (3.123)
ax™ ax"

B, = Y Pom _ (3.12b)
ax™ ax"

C,, = B Pm _ (3.12¢)
ax™ ax"

I will prove the following for the system, Egs. (3.8):

(i) If the integrability relations, Egs. (3.12a)-(3.12c), are
met, the Helmholtz conditions (3.7a)~(3.7e), are satisfied
identically.

(ii) Conversely, if the Helmholtz conditions (3.7a)—(3.7¢)
hold, the existence of an integrable gauge, f .., [, . Jor which
Egs. (3.12a)-(3.12c¢) are satisfied, is guaranteed.

Under (3.11a) and (3.11b) we have

d (aA,, aA,,,)
A A, =A4,, + —|—— y 3.13a
nm ™ + 2\ pw ( )
dA Y|
B,.—B,. =8, + ( A "'), 3.13b
= ax™ ox" ( )
Con—C,. =C, s (3.13¢c)

so that the integrability relations are gauge invariant only for
the subgroup X C D for which the 4, satisfy

A, (x,t) =W (x,t)/dx". 3.149)

K will be called the kinematic or integrable subgroup. I will
also prove the following:
(iii) Each gauge transformation from K corresponds ex-
actly to the addition of a time derivative of a function,
W {(x,t), of the coordinates and the time, to principal part La-
grangians, L. Moreover, in the Helmholtz case for integrable
dynamical gauges, L and L, are kinematic gauge equivalent.
As I have already noted in Ref. 1, the addition to .#" of
the most general form of a time derivative of the coordinates
and the time causes a change of .Z" corresponding to the
transformation (3.11a) and (3.11b). Thus, for the effects of
gauge transformations in the Lagrange functions, we have

d

D: % + Zz"A,,(x,r), (3.15a)
KLsL=L+ g;W(é’,t). (3.15b)

The situation may be summarized as follows: (i) Modu-
Io a dynamical gauge transformation (X-equivalence class).,
integrability of [( f,, (x,%,2), f,.(x,%,t)] and the Helmholtz
conditions for a second-order system are equivalent; and (ii)
the Lagrangian potentials for a set of equations satisfying the
Helmbholtz conditions have the line integral expression'*

fgL(é}é:,I)—L(é-"é;’,f)
&)
=f @x"fi, +di" 1), (3.16)
€ £

for integrable dynamical gauge choices for [ £}, (x,%,t),
JSon(x,%,1)]. Under (3.15b) residual part specification of prin-
cipal decompositions of a universal Lagrangian may be tak-
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en as kinematic gauge invariant, and the corresponding
gauge covariance group for 6.7 is then the factor group'®
=D/K. )

To establish (i), (ii), and (iii) we can reexpress Eqgs.
(3.7a)—(3.7¢), substituting Eqgs. (3.9), (3.10), and (3.12). Due
to the form of the G, in Eqs. (3.8), the velocity-integrability
of the C,,, for each m is assured, so Eq, (3.7b) can be
dropped. Respectively, the other four conditions are

C,,,=0, (3.16a)
B, + B, (3.16b)
a a acnl
— (B, —B,)— [¥*— =0, 3.16
am( n) (a+at)a (3.16¢)
3 3
Anm B _an
(o 2 )]
a 3
- C_=0. 3.16d
#Z+ e, (3.16d)

Since Eqs (3.16a)(3.16d) are homogeneous in the
A4,.,B,,,and C,,, assertion (i) is immediate. To prove as-
sertion (ii) we must show there exists a gauge in which Egs.
(3.16a)—(3.16d) guarantee the vanishing of the 4,,., B,,,.,
and C,,,. Equation (3.16a) already states the vanishing of
C,... Using (3.16a) the last terms in Eq. (3.16c) and (3.16d)

are zero and we may rewrite the equations as

Cn=0, (3.17a)
B,, + B,.,=0, (3.17b)
dB,, /9x'=0, (3.17¢)
dB,, /dt=A, , (3.17d)

where Eq. (3.17d) qualifies as the expression of (3.16d)
owing to the freedom of B,,,, from x ‘~dependence implied by
Eq. (3.17¢). Equation (3.17d) shows that we need only prove
that B, can be made to vanish by a gauge transformation,
for then 4,,, = 0 also will hold. By Eq. (3.17b) this means
that the B,,, must be line integrable in the x *, which is as-
sured if they satisfy the equations

B, =0B,,,/3x' + 3B, /dx™ + 3B, ,/8x" =0, (3.18)

identically.
Equation (3.12c) shows that C,,, = Oimplies that there
is a function ¢ (x,x,¢ ) such that

frm =0 /0X™, (3.19
SO we may write
a ( dé )
B, = —| fi.— . 3.20)
axm / ax" (

Using (3.17b) we have
2Bnm =Bnm —an ’
e S (2 (33 ()]
ax" ax" ax" x™ \gx"
(3.21

Now form the sum in (3.18) using (3.21); the quantity in
brackets drops out as it is already in the form of a “curl”, and
the rest can be reexpressed in terms of the 4,,,,,, giving
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4, 94 d4,,
2B = axnl + g+ axi" . (3.22)
Using Eq. (3.17d) in the form
A4,.,.= 9B, + xk et (3.23)
ot ax*

and substituting into (3.22), the right hand side, owing to the

independence of the B,,, of the x ¥, reduces to 3,,,,, and Eq.

(3.18) then follows immediately. This proves assertion (ii).
I will prove (iii) next. Suppose first that

d

L-L+ Zw(en. (3.29)
dr

To determine the effect in (f,, , f5,) do the following: sub-
stitute (3.24) into Eq. (2.4), use Egs. (2.3a) and (2.3¢) and
expand in a Taylor series aboutz” = 0,7 " = 0, retaining only
first order terms to arrive at the (strong equation) equivalent
of Eq. (2.1). Upon comparison, the effect is seen to be the
addition of the gradient (9/0x", 3/9x™), of dW /dt, viz.

Fin=fn ( ) =St dt(aW)

Finfon + 3(":) ~fut 22,

which is a gauge transformation from K by Eq. (3.14). Con-
versely, if we perform the gauge transformation given in
(3.25) and (3.26), Eq. (2.1) gives for the change in .,

(3.25)

(3.26)

Ay =74 (""j +2»¥ 327
dt \dx" ax"
d d ) aw
=" + 27 . 3.28
( ax" ax"/) dt (3:28)
The last line is obtained with the help of the identity,

dw a x 0 )
— =4+ X — ) Wxt). 3.29
dr (dt + ox* (ot (3.29)

Using Taylor expansion methods again, Eq. (3.28) can be
reexpressed in principal coordinates as

dw(ét)  dw(é’ t)
dt dt

AL~ (3.30)

displaying the role of the operator on the right side of (3.28)
as a total differential on the (x,x) space. Thus the transfor-
mation results in

L' =L+ AL ~(L +dW/dt)y— (L' +dW'/dt),
3.31)

to which we may give the interpretation
L—L +dW(&,t)/de. (3.32)

Equation (3.16) shows the equations of motion from L
to be Eqgs. (3.8), which are assumed to be those from L, . So
L and L, can differ only by a time derivative of a function of
the coordinates and the time, as that is the most general
solution of the set,

d d )

— L, —-L)=0, n=1,.,N, (3.33)
(dt ax"  ax" (Lo )
regarded as identities, and with L,,-L assumed to be a func-
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tion of the x, x, and ¢. This proves the second part of (3), that
L and L, are kinematic gauge equivalent.

I will illustrate the material of this section by examining
the problem of a charge g experiencing a Lorentz force, for
which

f, = g(E + ¢~ 'xXB), (3.342)
f2 = pparticle = p(x)' (334b)

Necessary and sufficient conditions for the equations of
motion,

f,—f,=0, (3.35)

whether p = p(X) is the relativistic or nonrelativistic mo-
mentum function, to satisfy the Helmholtz conditions are
easily shown to be

VXE + ¢ 'dB/dt =0, (3.36a)
V-B=0. (3.36b)
These are also the conditions for the existence of the usual set

of potentials, ¢ = ¢ (x,1), a = a(x,t), of the electromagnetic
field: E= — V4 — ¢ ' da/dt, B = V Xa. The Lagrangian

Ltz + £z, 3.37)
cannot be expressed in the form of Eq. (3.16), as (f,.f,) is not
integrable due to things like [cf. Eq. (3.12a)],

Vxf, =¢(VXE + ¢~ 'V(xXB)),

=g(VXE+c¢ '%(V.B) — ¢~ '(x-V) B),
= —gqc~ ' dB(x,t)/dt #0. (3.38)

The dynamical gauge transformation corresponding to the
choice in (3.11b)

A(x,t) =qc ' a(x,t), (3.39)
results in the integrable set

f,—f; =q(E + ¢~ 'xXB) + gc ' da/dt

=V, (—gp +gc 'xa), (3.40a)

f,—f, =p(X) +qc 'a. (3.40)
If we define

L,= J-x dxp(x), (341
for the kinetic term, Eqs. (3.40) take the form

fi = Vo (Lo(X) — g¢ + gc ~'%-a), (3.42a)

f; = V. (Lo(X) — g + gc " 'x-a), (3.42b)

vindicating Eq. (3.16), the quantity in parenthesis being the
usual Lagrangian for a charged particle in Lorentz force
field.

Observe that the dynamical gauge transformation,
(3.40b), to the integrable gauges is what in other language
would be termed a “minimal substitution.” There the idea is
to introduce a gauge field interaction into a formalism; here
the equations of motion, or the force law, are assumed given
and Eq. (3.40) constitutes a dynamical gauge fixing in order
to send 8L to zero.

The kinematic gauge transformations all are given by

f—f; =f, 4+ qc! EVA
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=f, +gc~'V ((?9—/: + x-VA ) , (3.43a)

f,>f, =f,+gc~'VA, (3.43b)

which corresponds by (3.40a) and (3.40b) to transforma-
tions of (4,a)

p—d'=¢—c '/, (3.44a)

a—a =a+ VA, (3.44b)
the usual gauge transformations of the electromagnetic
potentials.

I will close with a brief remark; it is possible to extend
many, if not all, of the results of this section to the classical
nonAlbelian gauge (Yang-Mills) force law equations de-
rived by Wong.'® In the extension the “precession” equa-
tions'® of the 1 °(7), quantities corresponding to the gauge
group generators, are treated as subsidiary conditions; and
gauge covariant derivatives replace ordinary derivatives.
Thus, for example, in Eq. (3.8) d /dr gets replaced by 6/67,
where 7 is the particle’s proper time and the connection for
the covariant derivative pertains (only) to the x *~ variation,
viz.

o _
o ot
where V, is the gauge covariant derivative operator and the
dot denotes differentiation by 7. In this method, Egs. (3.2)
are satisfied after the subsidiary conditions have been used to
eliminate the 7° (7) dependence entering in from the first

term. It is this procedure which makes it possible to achieve
the form of Eq. (3.45). The modified form of Eq. (3.8), viz.

+ Y, fon s (3.45)

o
— =0, 3.46
5 Siu (3.46)
is invariant to the generalized dynamical gauge
transformation,
, 6
f‘ly_)fl;z =f‘1” + 6—7' M‘u(x)) (3.473)
Sou=fop =+, (), (3.47b)

while the kinematic subgroup is defined by the restriction of
the &7, (x) to the form

g,x)=V, #(x), (3.48)
which may be compared with Eq. (3.14). Evidently, the gen-
eralized dynamical gauge group, for the nonalbelian gauge

force law, is still abelian. The Lagrangian giving the Wong
equations by this procedure is

L(xx,r)= —m(— %)+ gi" 4,,() I°(r), (3.49)

where g is the coupling strength of the particle, of mass m, to
the field, and the A4, (x) are the gauge field potential
functions.

4. GAUGE TRANSFORMATIONS AND THE
HAMILTONIAN FORMALISM

I shall show that (i) the effect in % of a dynamical
gauge transformation can be realized in a canonical transfor-
mation on the full phase space; while (ii) that of a kinematic
gauge transformation can be understood to correspond to a
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canonical transformation of H in the space of the ( £, p) and
the (£’ — p'), the two being identical. Specifically, I shall
find transformations of the forms of the Hamiltonians,

D: >~ — %Z"A,,(x,t), 4.12)
K:#—% =H— %W(g,z), (4.1b)

where in the momentum variables in the arguments of 5%
and H one makes also the substitutions

D:p =P — 94 (x1),

5 ox (4.22)
PP — —2" A, (x,1)
az"
3
K:ip,—p, — —— W(&L). (4.2b)

oE"
Equations (4.1) and (4.2) may be compared with Eqs. (3.15).
Note again that L and H are not the Lagrangian and the
Hamiltonian, but rather principal part functions for (arbi-
trary) principal decompositions.

In addition, I shall obtain the result (jii) that the trans-
formations of principal coordinates by the canonical trans-
formations for the gauge group have the property that
primed and unprimed variables transform the same to strong
equality only for the kinematic subgroup. In consequence of
this, residual parts, 57, of principal decompositions of the
Hamiltonians can be assumed kinematic gauge invariant up
to equivalence by the duplicate (joint) canonical transforma-
tion of the primed and unprimed variables, indicated in
(4.2b), but are then dynamical gauge dependent. The corre-
sponding gauge covariance group is again the factor group
D', in parallel with the situation in Sec. 3, for 6.7 . Proceed-
ing to the proofs, I take up (i) first.

From Eqgs. (2.10) and (3.11b), the effect of a gauge
transformation on H is determined from

P — A (01)=fo,(xX2), “4.3)
whose solution, by Eq. (2.9b) is
X" =Fxp, —A(x,t)t). “4.4)

From Egs. (2.9a) and (3.11a), together with Eqgs. (4.3) and
(4.4), we have also

dA
Fln(x) z’tPFln(x’pz —A7t) - _d_tn—(x’pz —A’t) ’

4.5)
where the last term stands for
dA,
i (x,p. —At)
= 94, + FJ(x,p, — A,t) %—, (4.6)
at ax™

with the help of Eq. (4.4) for the coefficient of 94, /dx™.
Substituting into Eq. (2.2) we find

~ dA
Ko = [Fl,,(x,pz —Ap) — —:i-tl'—(x,pz —A,t)] "

+Fi(x,p, —At)p,.. @7
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On the other hand, consider the effect produced by the
canonical transformation generated by means of

Ry =R \(x.2, Px,Pz 1), (4.8)
= [P,. —A4,(x,t)] 2" +x"P,.. 4.9)
The equations of the transformation are
9Fr_ ., Iy, (4.10)
dz" aP,.
IR, =D 9%, =2Z". “.11)
Jx, op |
These equations determine the transformation, T, as
T x">X"=x", (4.12a)
"—Z"=2z", (4.12b)
04, (x,t
po-—Py.=p.+ —ﬁz’" , (4.12c)
ox"
PP, =p.+A4,(xz2). (4.124d)

Note that if 4, = O for all n,R, generates the identity
transformation. The transformation of 5# is given by

HX2, P> Port V> H (%2, Dy Pt ) »
= (T ' (x,2, Py, P,st) + OR /3t .
(4.13)

Inverting the transformation, Egs. (4.12), one finds
H =H(x,2,p, —2"0A,,/0x,p, — A,t) — I(z"4,,)/t

~[F,(x,p, —A,t) —03A4,/3t]z"

+F3(x,p, —At)[ p — (0A,,/9x™) 2™]
~[F,,(x,p, —A,;t)— [0A4,/3t + F}(x,p, — A,t)

X (04, /9x™)} ] 2" + F3(x,p, — At) P » (4.14)

which, upon substitution of Eq. (4.6) for the bracketed quan-
tity, reduces to the same expression as that on the right side
of Eq. (4.7). Thus, finally,

FOx,2, Prs Pt Y= (X2, , Pt) (4.15)

the promised result. I turn next to the proof of (iii).

Equations (4.12) can be rewritten in a slightly different
way. If we denote the 2V coordinates, (x", z*} by the single
symbol, ¢, and the (p_., p,.) by 7,, we have

T:q9—-q, (4.16a)

7, —T, + 9 [z4,(x0)], (4.16b)
aq”
and the quantity in parenthesis is the object whose time de-
rivative, when added to ., corresponds to the gauge trans-
formation to which the canonical transformation T, is equiv-
alent [ compare Eqs. (4.22)]. Let us examine the behavior of
principal coordinates under this transformation now. The
definitions of £ and £’ in Egs. (2.3), are untouched, but those
of pand — p’ are transformed; from Egs. (2.3) and (4.12)

Pn—Pn = Pn +A4,(x,1) + 12" 94,,/0x,

~p, +A,(£2) + 166 7(0A,,/E" — A, /™),
(4.17a)
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—pi—>— By = —pu +A,(x,t) — 42" 94, /%"
=~ —p, +A4,(§'1) — 486 "(0A,,/9E ™

—94,/9E'™), (4.17b)
where I have used things like
An(x’t) =An(§ - %‘sg!t)
ZAn(gyt)_iagmaAn(g’t)/agm’ (4'18)

The “strongly specified” transformations of p, and — p;, are
identical if and only if

JA,,/ox" —3A,/dx" =0,

but otherwise asymmetrical.

To obtain (ii) I shall only have to express the trans-
formed 5 in an appropriate way in principal coordinates
under the assumption of Eq. (4.19), or equivalently, Eq.
(3.14). Using Eq. (3.14), the canonical transformation corre-
sponding to (4.17) becomes

(4.19)

T:§"—¢", (4.20a)
Pn—>Dn +OW(E)/OE™, (4.20b)
§" 5", (4.20c)
—po——p, +OW(Et)/IE™. (4.20d)

The generating function for T, in Egs. (4.20) is
Ry =R&EPP'L) .21

=P, §"—W(E)+ P E"+W(E'), (422)
which can be verified from Eqs. (4.10) and (4.11) specialized
to this case. So, from Egs. (4.13) and (2.5), the corresponding
transformed Hamiltonian is given as
FAEL" b, Pt )=FT 5 (£, p't)) + OR /3t

~[H(&p— W) —W/dt]
—[H(§', —p —FW',t)—-3W'/dt]
+S6H(Ep—OWE',—p —IW't).
(4.23)
Of course # must be the same, by Eq. (4.15). But it is
worthwhile to display this explicitly. Substituting Eq. (3.14)
into Eq. (4.7) we have
F~F,,(x,p, —IW,t) 2" + F(x,p, — W)
X [ pen —27(8/3x™) AW /9x"] — z™(3/Ix™) OW /3t ,
4.24)
which follows after a little manipulation and some help from

Eq. (4.6). Equation (4.24) can be reexpressed by applying the
Taylor series expansion trick, as in Eq. (4.18); we have

Z(3/9x™) W /It~IW (&,t)/0t — AW (&',t)/Ft, (4.25a)
Z"(0/0x™) W /Ox"~AW (&,t)/FE™ — AW (&' ,t)/IE "™ .
(4.25b)

Noting also Egs. (2.3) and (2.7) and introducing

§=12€ +8§)=x,p=1/2(p—p') =pz, Eq. (4.24)
becomes

H=F, (£, p— W) 86" + Fi( &5 — W)
X8 p, ~9, W)Y— (W /3t —3W'/]t). 4.26)
Equation (2.2) can be written with the same notation as Eq.
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(4.26); Eqgs. (2.5) and (4.26) then give the expected result
F~[H(&p—IW,t)—aW /3]
—[H(E',—p —~dW't)—3W'/dt]
+8(Ep—IWiE',—p —~dW't). (4.27)
From Egs. (4.23) and (4.27) evidently, as claimed in (ii),
we can interpret the effect of the canonical transformation of

J¥ for a Kinematic gauge transformation corresponding to
W, as corresponding to a transformation of H:

H(&pt)y->H(Ep—OdWe)—3dw/oe, (4.28)

i.e. the result of a canonical transformation on the phase
space of the ( £, p). Indeed, the generating function in Eq.
(4.22) obviously has the form,

RAEL, PP t)=R(§EPE)—R(E',—P'st),
(4.29a)

with
R(&Pt)Y=P, E"— W(§t), (4.29b)

and R generates the transformation Eqgs. (4.20a,b) and
(4.28).

I will reexamine the relationship between R, and R,
from another standpoint in the next paper of the present
series.'*

5. INTEGRABILITY FOR THE HAMILTONIAN

I have fixed the relationship between principal decom-
positions of .%” and 57 by the generalized Legendre transfor-
mation and shown the equivalence of the Helmholtz condi-
tions to integrability. The latter refers to the existence of an
integrable dynamical gauge, for which §.7, and, by Eq.
(2.18), 877 as well, vanish. Integrability is a kinematic gauge
invariant property of the f}, (x,X,t), f,, (x,%,t ), expressed in
Eqgs. (3.12) and realized in Eq. (3.16) in the determination of
the Lagrange function L, for the Helmholtz case.

We have seen the complete correspondence of proper-
ties of 7#7°, H and 85 to those of .¥°,L and §. in Secs. 3 and
4, in the behavior of these quantities under gauge transfor-
mations. For the Helmoltz case, as I shall now show, when
67 ~0, the F,,, F}, also satisfy integrability relations, anal-
ogous to Egs. (3.12), viz.

dF IF
= In _ im =0’ (5.13,)
oo™ ax"
dF aF%y
Br=—"1_ 1 =9, (5.1b)
ap,_. ax"
JF} ary;
Crm=—2_ 2 =0. (5.1¢c)
ap,m p,.

This may be seen by using Eqgs. (2.3) in Eq. (2.5); expanding
about z" =0, p_. =0, and keeping only first-order terms to
obtain a strong equation; equating the result then to the cen-
tral coordinate form in Eq. (2.2); and finally identifying the
coeflicients of the constraints. This gives F,,, as dH /9x" and
F?} as dH /dp,, in analogy with the results for the Lagran-
gian L, as in Eq. (3.16); equating cross-partials of H then
produces Eqgs. (5.1). In exact parallel with Eq. (3.16) we
have'
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H~H (& pt)—H(E, —p't)

£p)
= J(L’ ) [dx"Fln(x,Pz:t)+dP,~F§(x’PzJ)]’
s —p) (5‘2)
where the line integration is along an arbitrary path
o—[x"(0), p,.(0)] between the points (£’ — p’) and (£, p).
Now H is the “potential” for the “vector” (F,,, F3) over the
crossed-pair “phase space” of (x”, p,.).

Equations (3.13) give the gauge transformation proper-
ties of the quantities appearing in Egs. (3.12), from which the
kinematic gauge invariance of integrability for a set of
fins Jon Was noted previously. Similarly, we expect that inte-
grability for a set of F,,,, F; is also a kinematic gauge invar-
iant property. Equations (4.6) determine the behavior of the
quantities in Eqgs. (5.1) under a gauge transformation; I find,
after a little labor

— 94 o4
‘Mnm_)dnm = I:Mnm - (£’+ FIZ( _Q—)( = — ’")
ot Ix*) \ax™ ax"
o4, a4,

k,]' H(c?F,,, J4, 8F’2‘)
cHl + -
ox" Ix™ ap dx" dp,

o4, 3Ak) od, ] ]
— + Bt — (nem) |,
(ax" ax™ Ixk { }
(5.3)
_ [ﬁ:'. , O (aAk ~ aA,,)+ oA, an], ’
ap - \ Ix" ax* ax"
(5.4)
Cnm___)énm — [Cnm]r , (5_5)

where the primes on the right sides express the convention,
for a function f(x, p,,t),

[f(x,Pz,t)]l Ef(x,Pz —A(x)t)9t) . (56)
Equations (5.3)~5.5) display the desired result, since Eqgs.

(5.1) imply the vanishing of the right hand sides if 4, has the
form of Eq. (3.14).

6. DISCUSSION AND CONCLUSION

The Helmholtz conditions, Eqgs. (3.3)—(3.5), are inte-
grability relations on the G, for existence of a potential func-
tion L. The G,, in turn, in the Helmholtz case have the form
of Eq. (2.8); while the [ f,, (x,%,t), f3,(x,%,t )] array forms a
2N-dimensional vector over an “expanded” configuration
space of coordinates and velocities. This vector is the gradi-
ent of L, as may be inferred, for instance, from Egs. (3.12) or
from Eq. (3.16). In the nonHelmholtz case where the G, yet
have the form of Eq. (2.8), the vector [ f,, (x,%,2),

Jfon(x:%,2) ], no longer a gradient, still can be expressed as the
sum of a gradient part and a nonconservative part. This cor-
responds directly to the principal decomposition of .¥” when
it is expressed in principal coordinates: The gradient of L,
plus the analogous array of partial derivatives of §.% evalu-
ated on the constraint hypersurface (in the expanded con-
figuration space of 4N dimensions), equals the vector

(fi1n> /2 ) The separation of a gradient piece from this vector
is arbitrary when this vector is not itself a gradient; corre-
spondingly the decomposition of .# is arbitrary.
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So the first two theorems of Sec. 3, above Egs. (3.13),
serve to characterize the scope of the traditional subject of
mechanics, where L exists in the sense of Eq. (3.2), as defined
in terms of 2N—dimensional conservative vector fields on the
space of (x,x). The new formalism can be understood as an
extension to the nonconservative case.

The corresponding characterization exists for the phase
space. The generalized Legendre transformation in Sec. 2
provides the basis of uniqueness for the correspondences of
principal part functions L and H, while Egs. (2.92a) (2.9b)
and (2.10) specify the relationship of the vectors (f,,,, f5,)
and(F,,, F}). The corollary stated at the end of Sec. 2 shows
the correspondence of integrability of these two vector fields
on their respective (and distinct constraint submanifold)
spaces.

The precision of the foregoing correspondences has to
be understood against the backdrop of two well-known ver-
sions of arbitrariness present in Hamilton-Lagrange theory,
however. Equation (3.33) expresses the first; its general solu-
tion isd W (x,t )/dt, where Wis arbitrary. On the other hand,
Eq. (2.8) is invariant against the general gauge transforma-
tion given in (3.11a) and (3.11b). The third theorem of Sec. 3
ties down these “freedoms” in terms of the properties of the
dynamical gauge field functions, 4, (x, ), in complete gener-
ality: those parts of A, —arrays that form a (configuration)
gradient of some function W (x,t ) may be regarded as gener-
ating r—derivative contributions to the principal part func-
tion L. That the corresponding effects in # can be under-
stood as canonical transformations, in the right way, was
detailed in Secs. 4 and 5. Thus correspondences between La-
grangian and Hamiltonian quantities survive, and in addi-
tion receive natural extensions.

It is an interesting and very significant feature of the
present theory of mechanics, to my mind, that one does not
have to choose an integrable dynamical gauge (assuming one
exists) in order to have a theoretical mechanics description
for a system. Thus it is not a priori necessary to introduce
potentials for the problem of a particle experiencing a Lo-
rentz force, as it is in the usual mechanics, which does not
even get off the ground without them. This is a satisfying
feature of the present formalism because Eq. (2.8) contains
no potentials.

In Sec. 4 two generating functions were discussed, #
and #,,in Egs. (4.9)and (4.22). When 4, = dW /dx "holds,
R ,~AR, also does. But the last relation is extraordinary in
that it pertains not to functions of canonical variables but to
generating functions, of mixed old and new variables. Also,
Eqgs. (4.17) showed that nonintegrable gauge transforma-
tions destroy the separation of primed and unprimed princi-
pal coordinates. These circumstances are symptomatic of a
more general situation that will find a formulation and reso-
lution in the next paper of this series,'* where, from the
Hamilton-Jacobi theory on the big space, a complete time-
dependent general coordinate transformation theory is con-
structed for the constraint submanifold.

ACKNOWLEDGMENT
This work was supported by Naval Surface Weapons
Center Independent Research Program.

Robert Cawley 2358



'Robert Cawley, Phys. Rev. A 20, 2370 (1979).

2P. Havas, Nuovo Cimento Supp. 5 (Ser. X) 3, 363 (1957). The stress of the
physical difficulties with the integrating factor approach appears to be due
originally to this author.

’P. Havas, Acta Phys. Austriaca 38, 14 5(1973).

*R. M. Santilli, Hadronic J. 1, 223 (1978). This author also gives an exten-
sive list of references, older as well as more recent, to the general problem
of Hamilton and Lagrange formulations, along with an exposition of the
history of the subject.

°E. H. Kerner, Adv. Chem. Phys. 19, 325 (1971).

SH. Dekker, Z. Physik B 21, 295 (1975); ibid. B 24, 211 (1976); and Phys.
Rev. A 16, 2126 (1977).

7A recent reference is C. Grebogi, A. N. Kaufman, and R. G. Littlejohn,
Phys. Rev. Lett. 43, 1668 (1979).

8J. M. Jauch, Helv. Phys. Acta 37, 284 (1964).

°P. A. M. Dirac. Can. J. Math. 2, 147 (1950); and Proc. Roy. Soc. (London)
A 246 326 (1958); see also P. A. M. Dirac, “Lectures on Quantum Me-
chanics,” Yeshiva U., New York, 1964 Lectures No. 1 and No. 2.

'°E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern
Perspective (Wiley, New York, 1974), Chap. 8.

‘"The use of strong equality in the Lagrangian formalism is introduced in

2359 J. Math. Phys., Vol. 21, No. 9, September 1980

Ref. 1. The hypersurface needed to define it lies in the 4N-dimensional
“expanded configuration space” of coordinates and velocities, and is de-
finedbyz"=0,2"=0,n=1tc N.

'2The possibility of the Hamiltonian form for an arbitrary system of equa-
tions by appending extra variables is a general theorem due to S. Lie and
G. Koenigs [E. T. Whittaker, Analytical Dynamics (Cambridge, 1937), p.
275). The Hamiltonian due to G. D. Birkoff (“Dynamical Systems,”
Amer. Math. Soc., New York, 1927, pp. 57 and 58) closely resembles the
function appearing for ¥, on the right side of Eq. (2.2). 57, however,
specified only to strong equality, is not a function but an equivalence class
of functions. The relationship to the Rirkhoff Hamitonian is discussed in
Ref. 1.

3In this section, the subscript H stands for Helmholtz rather than Hamil-
tonian, as in the last section.

"“This formula has interesting significance and generalization for the pre-
sent theory, to a line element space symplectic formalism [Robert Cawley,
Phys. Rev. D (in press)].

“Since the dynamical gauge group is Abelian, every subgroup is invariant
so the factor group of D by X is defined.

'°S. K. Wong, Nuovo Cimente A 65, 689 (1970}.

Robert Cawley 2359



Relativistic covariance and rotational electrodynamics

James F. Corum

Department of Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506

(Received 13 September 1979; accepted for publication 16 May 1980)

The following article demonstrates how the logical coherence of relativistic electrodynamics is
maintained for a particular family of rotational paradoxes. The internal computational unity, for
rotation, is preserved through the manifestation of a commonly unrecognized geometrical

property of tensor calculus.

INTRODUCTION

An interesting family of paradoxes frequently discussed
in electromagnetics classes concerns the fields produced by
rotating charge distributions.! That a rotating spherical shell
of charge, for example, produces a magnetic field in the
frame of a laboratory observer is readily accepted by many
students. “However”, a student will query, “with respect to
an observer whose system of reference is co-rotating with the
sphere, the charges are at rest and hence, in this system, no
magnetic fields ought to exist.”

A similar paradox occurs with rotating cylindrical dis-
tributions of charge.” Once again, a laboratory observer per-
ceives an axial magnetic field whose source is the rotating
cylinder of charge. For a co-rotating observer, the charges
are at rest and therefore should produce no magnetic fields.
Even worse, for the rotating observer inside the cylinder, by
Gauss’s Law, there should exist no electric fields. How then
can we have a nonzero field tensor inside, in the inertial sys-
tem (laboratory frame), and a vanishing field tensor in the
rotating system, since if a tensor vanishes in any frame it
must vanish in all other systems of reference at that point?

In both of these paradoxical examples the reader is cau-
tioned not to accept the conclusions unquestioningly. The
logic may be impeccable—but the presuppositions are erro-
neous. Why do we resurrect these historical paradoxes? Be-
cause we believe that they illustrate the computational beau-
ty and conceptual richness of relativity theory as manifested
through the inherent presence of the object of anholonomity.

We parenthetically comment that our physics is tran-
spiring on an underlying manifold that has zero curvature
(in the limit—i.e., we assume that we can paste charges onto
a flat manifold and not disturb the geometrical structure of
the manifold). Even though we are doing non-inertial phys-
ics, we are properly within the realm of what is traditionally
called special relativity. (Our approach works equally well
on curved spacetimes, of course.)

1. THE ROTATING SHELL OF CHARGE

The presentation of the magnetic field arising from a
rotating charged spherical shell appears in many textbooks
on electromagnetism. The computation is performed in the
frame of an inertial observer and, with the aid of calcula-
tional conveniences, smoothly proceeds from a specification
of the current density
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, Qo . .,
J,(r)= =—sin@'§(r — 1
s () Yo ) ¢y
to the computation of the vector potential
%ﬁ sin@ (r<a) )
4,6 =1 oo : Ezf,;
(] .
sind (r>a
3c” (r>a)

The magnetic induction follows from the curl of the vector
potential as

- 23& sin@ (r<a) (3a)
ca a
Be(r,g) - Qa)dz ind (r s a) . (3b)
3cr

4
— T
—

A

FIG. 1. Magnetic flux density arising from a rotating spherical shell which
is uniformly charged as perceived by a nonrotating observer. (Compare
figure 5-11a of Ref. 7)
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and
200 cosf (r<a)
B.(r6) = 3ca (o)
r\’s - 2 ‘
2wQa cosé (r>a) Gd)
3cr

These familar fields are shown for reference in Fig. 1. The
prescription followed has been to specify the current distri-
bution and follow the path J*—A “—F**, The inertiai elec-
tromagnetic field tensor is taken as
F, = 94, _ 94, '

Ix* ax”
One wonders if a similar path could be followed in the rest
frame of the rotating charges: Say, J “—A4 °—F “®, where the
rotating quantities and inertial quantities, by their tensorial
nature, would be related by some Lorentz-like transforma-
tion. In this article, we propose to pedagogically demon-
strate that this covariant nature of Maxwellian electrody-
namics, under relativistic rotation, is only attainable with
the inclusion of the object of anholonomity. (This remark-
able nontensorial object does not modify the theory of rela-
tivity in anyway, but rather is a commonly unrecognized®
inherent pre-supposition of tensor calculus on manifolds*.)

2. ROTATION IN SPHERICAL COORDINATES

Pirani® and later Irvine® have discussed how a rotating
observer may let his world line provide a time-like direction
and employ the Frenet—Serret Formulas to obtain a field of
orthogonal reference frames, e, .* The result for spherical
coordinates, is the field of frames (x* = 7 = ct)

e1 = e’_ (4a)

82 = eg (4b)
i

e;=ye, + 7—'2—‘"%'39 e, (4c)

e4=y%e¢+ye,. (4d)

These are orthogonal, and are related to the natural
basis vectors of the inertial observer’s field of reference
frames, at every observable spacetime event, by the Lorentz—
like transformation

e, =hfe,, (5)
where
1 0 0 0\
0 1 0 0
At =10 O ¥ y% ©)
2
0 0 7,rza)sme v
c
and
2ot _
Y= (1 _ r’wcszm 0) 5. @

Furthermore, for all observers in the rotating frame, the
metric tensor g, = e,-e,, will then have the orthogonal
form
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1 0 0o 0
o 0o 0
- 8
2¢=Vo 0 rsie 0 ®
00 o -l

Notice that this is consistent withg,, = k%A ;g,,,, whereg,,,
is the metric of the inertial (or non-rotating) frame.

In the inertial frame, one employs the usual spherical
coordinate Christoffe] Symbols

[:::] = 18 [8up, + 86v0 —8uas ] )

These familiar non-tensorial objects are symmetric in their
lower indices, and their spherical coordinate values appear
in many textbooks. Given the components with respect to
one frame, one transforms them with respect to any other
frame according to

o _papapv|Bl_ pupv 9RS
re _h#hbhc{va} s (10)

Employing Eq. 6, one finds that even though the inertial

frame {,u ] is symmetric in the lower indices, the I"'9_ are
va

not. This is because the set of frames, Eq.(4)and the transfor-
mation, Eq.(6)are anholonomic. The concept of anholono-
mity has been discussed elsewhere and one should note that
it arises from a choice of the field of reference frames and is
not a tensorial quantity on the underlying manifold as, for
example, torsion would be. (Torsion can’t be transformed
away over an extended region.) How does this asymmetry
affect electrodynamics?

An invariant form of Maxwell’s Equations may be ar-
rived at from a variational principle as

VP — 477.1", a1
where

J# = pr* (12)
and

F,=V,A4, -V A,. 13)

The four-vector potential has the covariant components giv-
en by:

A, = (A, rd,,rsinbA,; — D). (14)

In inertial frames of reference, Eq. (13) reduces to the simple
expression

04, 04
F, = - —£, (15)
ax* ax”
However, in the rotating frames of Eq. (4), Eq. (13) must be
written as the tensor

dd, 4

F, = — —+205,4_, 16
b axa axb b ( )
where

N, ei[r;, —rg]. 17

In inertial frames, this last component vanishes, but in rotat-
ing frames, Eq. (15) is inappropriate for the description of
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electrodynamics because it leaves out anholonomic effects
(Eq. (15) is not a tensor unless £25, = 0). The objects of
anholonomity may be computed by a variety of techniques,*
and since they are needed here, we present their computation
by the Cartan Calculus in the Appendix.

3. SPECIFICATION OF THE SOURCE DISTRIBUTION

In the inertial frame, let us specify the components of
the four—current density

Iy
" rsind

J,
=ptt=(J, =2

3P) (18)
so that

J* = (0,0,0p0:¢po) - 19
The charge density is taken as uniform when observed from
the inertial frame, say

Po= Q 5(r' —a).
4mra

In particular, for computational convenience, this means
that we are assuming that in the proper frame of the shell the
density of charge varies continuously with latitude in such a
way that the charge distribution just compensates for the
relativistic increase in density and hence, in the inertial
frame, is perceived as a uniform charge distribution. [This
assumption was really made back in Eq. (1).] In the inertial
frame, the differential equation represented by 11, 12 and 13
may be solved as

- 2 r<a
A= — D= Z (20)
.
r
and
—Q;o—'lsinze r<a
a
Ay = A, rsing = Q:)az @1
-—-3—sin20 rea.
re

One may quickly form the inertial frame field tensor from
Eq. (15) (since 2, = 0). Further, the separate F** for r <a
and r> a satisfy the point-wise boundary conditions across
the shell discontinuity. We have followed the prescription
given in Sec. 1: J#—A4 *—F**. We now shift to the rotating
frame and pursue the suggestion J “—A4 “—F ®. If our analy-
sis is acceptable, we should have a completely covariant for-
mulation of the problem, and have resolved any paradoxes
along the way.

4. COMPUTATIONS IN THE ANHOLONOMIC FRAME

Employing the dual to the transformation of Eq. (6), we
write down the current density in the proper frame of the
charges (the rotating frame)

Je=hoJ* =pv* (22)
or, more explicitly
Je (000c”°) (23)
4
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Again, J * reflects our choice of having p, specified as uni-
form in the inertial frame. This form for the charge density is
acceptable because the rotating observer perceives no mov-
ing charges (and hence no apparent magnetic field-produc-
ing currents.)

Remembering that in the rotating frame dV = ydV,, we
note that charge invariance is satisfied:

%J‘J-JJ“dSa —0. 24)

Since Eq(11)is form-invariant, the vector potential
must satisfy the differential equation

[gagbd(aA,, aA: sze)]_ AT ya

dc ¢

(25)

where the objects of anholonomity are given in the Appen-
dix. One may find the transformed components of the vector
potential by Eq. (6)

A, =htA,
as
A, =A4,=0, (26a)
2 h2
_ Zer;wsm 0 (r<a)
ca
A= L -, (26b)
yQua’sin®6  yQrosin®6 (r>a)
L 3cr c
2cin2
A, = ¢ (26¢)
e " yQa’w’sin’0 (r>a).
L r 3rc?

Now, by Eq. (26), (8), and (23) and the tabulated 2 ;_, one
may readily verify that Eq. (26) is indeed the solution of Eq.

[+
Qab#o
o - A - F* v, Pk
}

n2 hu hf}h,‘,’ na

} & ‘ !
39— AT Fab———>VbFa -E 2

0

A . JA JA —— e
Inertial Frames FW=V“A VuAu bX: B_X:'l "'(r,:,—l':,,)A‘,

JA
Rotating Frame: Fy,=V,Ap-VpAa= gxg ﬁ[a’ +2ﬂ§bAc

FIG. 2. This diagram indicates what is demanded of any covariant formula-
tion of electrodynamics. A relativistically covariant formulation is possible
for rotation by virtue of the intrinsic nature of the anholonomic object.
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(25). What would have happened if the rotating observer had
neglected the anholonomic contribution? Figure 2 would
then have to display an internal inconsistency.

Next, one might desire the field tensor in the rotating
frame. The reader is encouraged to transform the inertial .,
and compare with the results computed by Eq. (16) and the
tabulated 12 <, . For completeness, we list the nonzero results
(as obtained by either method).

25in2
QLQ_Z_C;EQ (r<a)
S FTE I S
2 3c*
)
27Q’2a3’ infeosd  (r<a)
ac
_ _ 276
F,y,=rE, 2yQa’w’sinfcosf e
3rc? >0
_&%yﬁ (r<a)
Fy, = rsin6B, = _ﬁ@@20~gg (r>a)
- 37
(27¢)
M_aii_:l_t’__w (r<a)
o 7d
F,; = ’sin6B, 2yQa*wsinfcosl e
= (r>a).

One may verify that Egs. 27 really do satisfy the Maxwell
Equations (if, by now, he is not already convinced of the built
in anholonomity in relativity for non-inertial frames). This
exercise is particularly illuminating since the left-hand side
of Maxwell’s source equations [or Eq. (25)] vanishes for
r#a, and the jump conditions are satisfied across the shell
discontinuity.

5. CYLINDRICAL SHELL OF CHARGE

When discussing the rotating cylinder, Fig. 3, Feyn-
man’ makes the provocative comment, “There is no ‘relativ-
ity of rotation’. A rotating system is not an inertial frame,
and the laws of physics are different. We must be sure to use
equations of electromagnetism only with respect to inertial
coordinate systems.” To which we agree wholeheartedly.
But, after making this seductive and tantalizing statement,
he passes on to another topic without hinting how one does
do electromagnetism in noninertial systems. (At a similar
point in their analysis of the sphere, Panofsky and Phillips'
appeal to General Relativity, even though they are working
in a flat spacetime.) Surely one may proceed as J “—4 “—F °*
since all are tensor quantities.

Let us formulate the problem in the inertial system in
the following manner: we specify the current density in cy-
lindrical coordinates.

T4 = pv* =, Jo/r.d cP) 8)
as

J# = (0,00,,0,c0,), 29)
where oy, is the surface charge density, assumed to be uni-
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FIG. 3. Magnetic flux density arising from a rotating charged cylindrical
shell. (Compare Fig. 14-5 of Ref. 2)

form over the thin cylindrical shell as perceived by the iner-
tial observer. We write

A
= 8(r'—a)y= —6(0 —a). 30
%o 2mal -9 2ma —a (30)
Equations (11), (12), and (13) are then solved as

2mro,amr? (r<a)
A,=rd, = 3 (31a)

2mop’e (r>a)

b, (r<a)

A=~ A (31b)

= b, + ———ln(—a—), (r>a)
27 r

where @, is a suitably chosen constant. The field tensor has
nonzero components:

0 r<a
Fi,=E = i_ rsa (32
27rr
droamr rea
F,=rB, = ¢ (33)
0 r>a.

We now turn to the analysis J A °—F “® in the rotat-
ing frame. In this system
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J = pv* = (0,0,0,co0/7)- (34)

Here again, we have assumed that in the proper frame of the
cylinder the density of charge varies in such a way that the
charge distribution just compensates for the relativistic in-
crease in density and is consequently perceived by the inertial
observer as uniform. (In this case a naive application of
Gauss’s Law would surely lead a rotating observer to con-
clude that F °® for r < a vanishes entirely.) The 2 ¢, for rotat-
ing cylindrical coordinates have been included in the Appen-
dix. One may readily verify that a solution to Eq.(25)for the
distribution of Eq.(34) is

2ryoawr’ 4 YDy
c c

2myoaw’r
CZ

A4,=

(r<a) (35a)

A, =y Dy + (r<a). (35b)

From Eq. (16) we compute the nonzero components of the
field tensor as

2
F,=E, = f”—"c"ﬂ (r<a) (36a)
F,=rB, = 3TVOS0 (. 4. (36b)

We note that these satisfy the Maxwell Equations. As a
check, we also see that

Je=hoJH (372)
A°=hoa* (37b)
F, =hth}F,, (37¢)

The internal consistancy of Fig. 2 is again demonstrated. We
are now in a position to analyze Feynman’s students’ query,
“ ‘What if I put myself in the frame of reference of the rotat-
ing cylinder? Then there is just a charged cylinder at rest,
and I know that the electrostatic equations say there will be
no electrostatic fields inside . . . . Something must be
wrong.’ ”

Our response is to reecho our opening comments: the
logic is unquestionable, but the presuppositions (concerning

£2¢,) are unsound.
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APPENDIX

For reasons of completeness, we briefly sketch one of
several techniques for obtaining the spherical coordinate ob-
jects of anholonomity for the rotating observer. (The cylin-
drical coordinate objects are derived in Ref. 4 .) In order to
obtain the £2 <, one may actually perform the laborious cal-
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culation indicated by Eq.(10) of this article. Alternatively, he
might employ the field frames given by Eq.(4) and the duality
relation:

(0%, ) =8, (A1)
to find the natural 1-forms for the rotating observer.
o'=dr (A2a)
o> =do (A2b)
o* = Y(dé — wdt) (A2c)
o= yc(dt — ia—):lTnz—e d¢) . (A2d)

Given these forms, one may compute the exterior derivative

do® =202 0" N’ (A3)
and read off the non-zero components of the spherical ob-
jects of anholonomity:

= — a3, = L (Ada)
03 = — 03 =y Lrosnoeol (A4b)
04 = —at, = L (Ad<)
0% = —04, = l’l’z—“’zs:iz“—ecﬂﬁ (A4d)
a4 = —0f, =p 00 (Ade)
0% = — 04 =y2r2wsirz‘6cost9 (Adf)

Similarly, the nonzero cylindrical coordinate components of
the anholonomic objects are:

2
ro
0% = —03 -+ L

52 (A5a)
04 =_04%=+ rro (A5b)
C
2
24 = —nt, =+ L (AS¢)
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The transformation from the usual Fock representation to the Fock—Tani representation for
composite particles is carried out for a simplified model of the composite which allows closed-
form expressions for the transformed quantities. A “statistical renormalization”, in which single
particle energies and interactions become dependent on the composite particle occupation
number, plays an essential réle in the solution, allowing absorption of unlinked terms into the

definition of the renormalized energies.

I. INTRODUCTION

The Fock-Tani representation for composite particles
has been shown to be a convenient representation for the
states and observables of systems of composite particles such
as atoms, molecules, ions, and nuclei, allowing explicit in-
corporation of the effects of internal structure and excita-
tion, rearrangement collisions, etc... into the algebra of states
and observables.'™ There are, however, some formidable
mathematical problems involved in the transformation from
the standard Fock representation to the new Fock-Tani re-
presentation, and as a result only partial results are available
for the explicit terms in the Hamiltonian in the new repre-
sentation. It is therefore useful to examine a model in which
the structure of the system is so simplified that all steps of the
change of representation can be carried out explicitly, in
hopes that the insight thus gained into the structure of the
representation can be extended to real physical systems.

The simplest imaginable quantum-mechanical model
of a composite particle is one composed of two types of fer-
mions, distinguished by two values 1,2 of a fermion species
subscript, such that each type of fermion can be present in
only a single state. Denote the annihilation and creation op-
erators for the fermion of type 1 by ¢, and ¢!, and those for
the second fermion by t, and 5. As usual, the dagger de-
notes the Hermitian conjugate. These are assumed to satisfy
anticommutation relations of the usual form®

vi=¢:=0, [g¥l], =lt'], =1,

(U], =[¥9l]. =0 ¢y
The Hamiltonian is taken to be

H=eyl¢ + ;91 ¥, + vl by, )

It has only four eigenstates, consisting of the vacuum state
|0) with eigenvalue zero, the one-fermion states

1) =9{[0), [2) =¢}|0) €)]

with eigenvalues ¢, and ¢, respectively, and a two-fermion
state

|a) = ¥y [0)=4"|0), @

with eigenvalue

2On leave from Dept. of Physics, University of Oregon, Eugene, Oregon
97043. (present address). .

“Laboratoire de Physique Théorique, Université de Nice, Parc Valrose
06034 Nice Cedex, France. Equipe de Recherche Associée au C.N.R.S.
N°. 128.
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€, =€, + 6+ )
Ifv < — (€, + €,), then this state can be thought of as a sim-
plified model of a bound atom (composite particle), and for
this reason the notation |a) will be employed. The “physical
atom” creation operation 4 T = ¢/ /] and its corresponding
annihilation operator 4 = ¥,3, are not Bose operators even
though built from fermions pairs, but instead satisfy the non-
trivial commutation relations

A2=0, [4A']_ =1—N,—N,
(4.4,] _ =144,)_ =4y, =44, =0, O
[A’¢¥]w :¢2’ [A9¢§]— = '_!bl’

where N, = ¢} ¢, and N, = f} , are the fermion occupation
numbers. The model may be described as a “zero-dimen-
sional” model since the composite particle has neither trans-
lational nor internal degrees of freedom.

The Fock space spanned by the eigenstates of H is only
four-dimensional and the quantum mechanics is utterly triv-
ial. Nevertheless, and in fact for this very reason, the model
is very useful for investigation and comparison of various
procedures for carrying out the transformation to the Fock—
Tani representation. In the following sections we shall inves-
tigate two methods, the “d-matrix” method® based on nor-
mally ordered operator basis expansions, and a new method
involving a “statistical renormalization” of the d-matrix and
of the matrix elements of the Hamiltonian, leading to com-
pletely explicit expressions in closed form. This latter meth-
od may have important implications for both the mathemat-
ical structure and the physical implications of this
representation in realistic models; the investigation of such
generalizations is best deferred until the simplest model is
thoroughly understood.

2. IDEAL STATE SPACE

Introduce ideal Bose operators a, a* satisfying the ele-
mentary Bose communication relation

(aa'] _ =1, @)
and acting on an “ideal atom” Fock space . spanned by the
states (n!) ~'/? (a¥)"|0), where |0) is the vacuum state of .=z’
This space s initially completely independent of the physical
Fock space .# spanned by the four eigenstates |0), |1), |2),

la) of H. The ideal state space ¥ is defined to be the direct
product ¥ = F# ® & of the physical and ideal atom spaces.
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The operators U, P10, ¥ on F
extended to .# in the usual way,
Y(F) = ¢,(f) e (o), Y[(F)=¢[(F)e ()

oF) =P ea(d), a(F)=(Fsa(w) @)

and the vacuum |0) now is interpreted as the direct product
of that of ¥ and that of .& satisfying

¥1/0) = #,/0) =a|0) =0, (0|0)=1. ®
On this extended state space .#, the annihilation and cre-

ation operators satisfy the anticommunication and commu-
tation relations

% and those a, a T on o7 are

vi=¢:=0, [y¥], =[]l =1,

['//111//2] + = [¢1’¢2T] + = 0, (10)
la,af]_ =1,

la) - =lag,)_ =lad]]_ =layl]_

Note the simplicity of the relations involving @ compound
with those involving 4 [Eq. (6)]. This is the main advantage
of ideal state space representations in more realistic cases
where bound composite states cause difficulties with quan-
tum field theory methods in the usual Fock representation.

There is an isometry between the physical state space
& and the subspace 7 ' of ¥ spanned by the four states |0),
1), |2), and |a), where

I =¢110), 12)=4¢}10), |a)=a'|0). 11
The mapping |0)—|0), |1)—|1), |2)—|2) is trivial, merely
involving replacement of the vacuum |0) of .# by that |0) of
% . On the other hand, the mapping |a)—>|a) from the phys-
ical to ideal atom state is nontrivial, involving replacement
of the fermion pair operator 4 ' by the ideal boson operator
a' satisfying simpler commutation relations. Nevertheless,
the mapping is an isometry in that norms and inner products
between the four basis states |0), |1), |2), |a) of F are the
same as those involving the corresponding ideal states |0),
[1), |2), |@) which span .7 . One can also define an ideal
Hamiltonian

H=¢|1)1] +&|2)Q] +¢,a)a| + B(1—-R), (12)

where |1)(1], |2)(2], and |a)(a| are the projectors onto the
corresponding ideal states, R is the projector onto .7,

= [0)O] + [D)(| + 22| + |a)al, (13)

and B is an arbitrary operator on # . The ideal Hamiltonian
H has the same eigenvalues on 3“ "as H does on %, with
eigenstates which are the images of those of H according to
the previously defined mapping; however, H also has phys-
ically spurious eigenstates lying in #©.%". " The projected
Hamiltonian

# = RHR = €,|1)(1] + &|)2] + €, |a)a|, (14)
has the same eigenstates and eigenvalues as does H on the
subspace . ' isometric with .#, whereas it annihilates the
spurious states (they all have eigenvalue zero). These proper-
ties are all special cases of a general ideal state space formula-

tion of the quantum mechanics of systems of composite par-
ticles, but the definition of H, R, and éf in terms of
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TABLE I. Notation for the operator basis.

i B,

(@)a"
@)'¢ia
@)¢i e
@yvidia" !
@) " '¢,¢a"
@Y pa

[= NNV T~ FURR G QN

2 X 3 xn

projectors is rather abstract. A number of methods are
known for constructing explicit expressions for H and 57 in
terms of annihilation and creation operators.® The particular
method which will be employed in the remainder of this pa-
per is that of the generalized Tani transformation.'*

3. GENERALIZED TANI TRANSFORMATION

Consider the unitary operator U on .#, defined by

U = exp (%F) , F=A'a—d'4= 1/4*'/40 —a'hy,,

(135)
If follows from the properties
Fl0)=0, Fy}|0)=Fy}|0)=
FY{¢}|0) = —a'0), Fa'|0) = y]yt|0), (16)

and the power series expansion of the exponential that
U-'oy=10), U 'Ih=[), U '2)=]2),
U~ 'la) = la), 17
where |1) = ¢110), |2) = ¢}(0), and |a) = | $}|0). Thus
this transformation effects the desired mapping from . to

’. The ideal Hamiltonian H which has the same eigenval-
ues and matrix elements on .’ as H does on %, is taken to

be

H=U"'HU. (18)
The projector R on "' is

R=U 'R0, (19)

where P, is the projector onto the subspace of # spanned by
eigenstates of N, with eigenvalue zero; here N is the ideal

boson number operator N, = a'a. P, has a number of repre-
sentations of which two convenient ones are’

27
P, = (zﬁ)*‘f d ™, (20
0

z ( _ l) (at)nan (21)
n=20

where the colons denote the normal-ordering operation. The
evaluation of H, R, and 7 is a nontrivial mathematical
problem. Use of the multiple commutator expansion for the
unitary transformation (18) is not productive since 7/2 is
not a small expansion parameter and the infinite operator
series are difficult to sum into closed-form expressions.
Equation of motion techniques are much more powerful and
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FIG. 1. Tridiagonal block structure of the d-matrix.

can, in fact, be made to yield exact closed-form expressions
in this simple case. Define

B(t) =~ "FBe*, (22)

where B is any operator on % . Then
BO)=B, B (%) =U ~'BU. (23)

B (1) satisfies the “equation of motion”
B@)=I[B@)F]_, (24)

where the dot denotes the derivative with respect to ¢. The
equation of motion techniques are based on systematic
methods of solving these equations of motion subject to the
initial conditions B (0) = B. Evaluation of the solutions at
“time” t = 77/2 then yields the desired transforms.

4. d-MATRIX METHOD AND NORMAL EXPANSIONS

This method? is based on operator basis expansions of
the equations of motion. Define an operator basis { B;} tobe a
set of linearly independent operators on the state space, i.c., a
set of operators such that no linear combination of these
operators with c-number coefficients is the zero operator on
the given state space. It is furthermore assumed that this
basis is sufficiently complete to allow expansion (with c-
number coefficients) of every operator of physical interest.
In practice this implies that the set { B, } must be closed un-
der commutation with F. The operators B, (¢ ) involved in the
equations of motion (24) are expanded as

B,(t)= Zcij(t )B;, (25)

with c-number coefficients c; to be determined. The d-ma-
trix (d;;) with respect to the basis B, is defined by

[B.F]_ =3d,B, (26)

The d-matrix elements are “structure constants” of the com-
posite particle which exhibit the kinematical relations be-

tween the composite and its constituents. Substitution into
the equations of motion (24) and use of the linear indepen-
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dence of the different B, leads to the following coupled equa-
tions of motion for the ¢(¢):

éq(t) - Zcik 1t )dkj! 27

k
or in matrix notation ¢(¢ ) = ¢(¢ )d, with the formal solution
c(t) = c(0)e”. (28)

However, exponentiation of the d-matrix is difficult, and it is
easier to proceed by direct solution of the coupled differen-
tial equations.

A convenient choice of basis elements B,, sufficiently
complete to expand all operators involved in the Hamilton-
ian, the transformation U, and the projector, is given by the
normally ordered products (@")"a”, (a®)"¢! ¢,a",
@Yy, @)yiyla**', @) *'Pya”, and
@)y} ¥} ¥,1,a". Let i stand for the pair (n,v) whree
n = 1,2,... is the boson index and v = 1,...,6 the fermion in-
dex. The notation is then defined by Table I. The method of
evaluation of the d-matrix elements is illustrated by the fol-
lowing example:

[(ai)nan’F] - = Zdn l;n'an'v
= —n@)" 'Yiyla" — n@yv e,
(29)
which implies
doin 14 =duin_15 = — N
(30)

dywy =0, (n'v)5#(@m —1,4) or (n—1,5).

In evaluating the commutators it is convenient to write
[@Ya"F]_ = (@Yayi¢ia— yi¢la@’)a"
— @Ya"a"y, + a"t(aYyan, 3D

and to make use of the identities

a@h =n@h" ' + @"a,
a'a’' =na" "' +a'a", (32)

leading immediately to (30). Evaluating the other elements
similarly, one finds the d-matrix shown in Figs. 1 and 2. The
blocks shown in Fig. 1 are the 6 X 6 submatrices of d,,,.,,.,
with fixed values of n and »’ but with v and +' running from 1
to 6. Note the tridiagonal block structure; only the blocks
4y s Bnvn 11,andd, ., _, . arenonzero. The elements
of the nonzero blocks are exhibited in Fig. 2.

n-| n ne |
o 0 0 -n -n O 0 00 0 0 O 00 0 0 0 O
¢ 6 0 0 0 O ¢ ¢ 6 1t 1 @ © 0 0 0 0 O
0 ¢ 0 0 Q0 ¢ o 0 0 1 ' [o] 0O 0 0o 0 0o © n
0o 0 0 0 0 O 0 0 0 0 O-(nl) 1 -1 -1 0 0 ©
0 0 0 0 0 0O © 0 0 0 O-(nd) t -i -1 0 0 O
o 0 0 0 0 o o 0 0 1 (o] o 0 0 0 o ©

FIG. 2. The (nv) rows of the d-matrix for v = 1,...,6 and a single value of #.
All nonzero elements lie in the columns with ' =n —1, norn +1.
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In terms of the (nv) notation the equations of motion
(27) are

é'lV.'l'V' (t) = Z'Cnv,n"v" (t )dn"v”;n'v' . (33)

The initial condition is obtained from (22), which implies
B,,(0) = B, and hence, by (25),

Cnv,n'v’ (0) = 6nn’6w' ’ (34)

where § is the Kronecker delta function. It follows from Fig,
2 that

énv;Ol (t) = émr,q2 (t) = énv;03 (t) = O’

Cryioal) 0 0 1 —17/|Cmo®)
i Crvos (1) _ 0 0 1 -1 Cprros ()
dt | Cuvos(t) -1 -1 0 © Cpy06(t)
Crv11 (1) 1 1 0 0 Cavr ()

The general solution of this inhomogeneous equation is the
sum of the general solution of the homogeneous equation
and a particular solution of the inhomogeneous equation.
One choice of the particular solution is

cnv;04p(t) = cnv;OSP(t) = cnv;06p(t) = 0’
Covt (1) = 8,5(8,, +8,5). (38)
The four linearly independent solutions of the homogeneous

equation can be taken to be the eigenvectors of the secular
equation

—iw 0 1 -1
0 — iw 1 —1
1 -1 —iw o |79° (9
1 1 0 —iw

with roots @ = 0 (with multiplicity two) and ® = + 2. The
solutions are linear combinations of the functions e’ with

these “frequencies”. It is convenient to choose cos(2¢) and
sin(2t ) as basis functions rather than e * ", Then one has

Crvioa(t) = Ags + Boscos(2t) + Cyusin(2t),
Cnyos (1) = Ags + Bosc0s(2t ) + Cossin(2t ),
Crvos(t) = Agg + Boeeos(2t) + Cyesin(2t),
Cr1(t) =A4,; + Byycos(2t) + C,sin(2t).

(40)

The particular solution (38) may be considered to be includ-
ed in 4,,. The initial conditions on the c,,,,.,, and their de-
rivatives imply

Aoy t+ Bo4 = 5n06v49
Ags + Bys = 5n08v5’
Ags + Bos = 5:106145!
A+ B, = 6n16vl’

2C06 = - 6n0(5v4 + 6v5)!

2C11 = 5no(5v4 + 61/5)’ (41)

whereas the differential equations imply
Aoe — A + 5n0(5vz +6,5)=0, 2Byy + Cos — €, =0,
—2C+Bos— B, =0, 2Bys+ Cyo—C,, =0,
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2C04 = 5n0(6v2 + ‘Svs + 51'6) - 5n16v1 s
2C05 = 6:;0 (6v2 + 5v3 + 5v6) - 5n16vl ’

Crvion )= 6!:061'1 s Cuvo2 @)= 6;:05.,2’ (35)
Crnno3 (1) =6,48,5.
Similarly, Fig. 2 and Egs. (35) imply
énv;04 (t) = éanS (t)
= Cryyoa (1) + €03 () + oo () — Covi ()
=8,00,2 + 6,00.5 + Crvi06 () = Coyyi (1),
Crvos(t) = — Crvoa (1) — Cavos (£)
Crvitt () = Cpioa () + €y (2)- (36)
These four equations can be written in matrix form as
follows:
8,0(6,2 +6.3)
8,00., 1 13) 37N
0
0
!
—2Cps + Byg — B, =0, Ay +Ays=0,
2By — Cyy — Coys =0, 2Cy5+ Byy + Bys =0,
2B, + Co + Cos =0, 2Cll—Boa_Bos=0- 42)
Equations (41) and (42) are all satisfied by
Ay = — Aos = %‘Sno(‘sw —8,5),
A06 = %‘Sno(‘sm - 5v2 - 6v3) + §5n16v1 ’
Ay = 55;;0(5,;2 + 5v3 + 5«») + %6n16v1 s
By =Bys = 557.0(51,4 +8,5),
By = — By =16,0(8,2 + 8,5 +8,6) —16,,6..,
C04 = Co = 55,.0(51,2 + 5v3 + 616) - i‘snlfsvl ’
Cii= — Cos =16,0(0,4 +6.,5). (43)

The solutions (40) are then
Crros(t) = 8,58,,008°t — 8,48 5sin’t
+ i[ano (6., + 8,5 +8.,6) — 64,6, Isin(2t),
Crvos(t) = 8,06,5c08°t — 8,48,,5in’t
4+ 1{8,000., + 6,5 +6.,6) — 8,,8,, Isin*(2t),
Crvos(t) = 6,066 cos’t + [8,,8,, — 8,5(8,; + 8,3)]sin’
~18,0(8.4 + 8,5)8in(2t )
Co1 () = 8,,8,,c08%t + 8,5(8,, + 8,5 + 8,4)sin’t
+18,0(8,4 + 8,5)sin(2t). 44
This method of solution can be extended to determine,
successively, thec,,. ., forn’ = 1,2,.. . The differential equa-
tions for n’>>1 are found to be
énv,n‘l = Covin' —14 @)+ Couvn' — 1,5 @),
Crpmat) = Crvnrs )= —Crurr 14C) = Crper — 15 @),
Cruma (L) =5 (1)
= Chpin2a () + Cryws () + Cyms @) — (0" + 1)
Covin’ +1,1 @)
Cpums@) = — (@' + 1), s (t) — (' + D, s(t). (45)
The second and third of these equations are solved by qua-
drature using the previously determined solutions for
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Covn —14 and c,.... _; 5. The fourth, fifth, sixth, and first
(with n’ replaced by n’ +1 in the first) can be solved simulta-
neously by the matrix method as were Eqs. (36), takingc,, ..,
and c,,...» as known inhomogeneous terms. The secular
equation for the homogeneous system is

—iw 0 i —('+1)
0 —iw 1 -+ o
~(+1) -+ —iw 0 ’
1 1 0 — iw
(46)

withrootsw = 0, + 2(n’ +1)"2. In addition, the inhomoge-
neous terms contribute all the “frequencies” generated pre-
viously for smaller values of #', i.e. @ = 0, 2, 2.2'%, 2.3'2, _,
2.(n")'”2. Hence the solutions for ¢,.,4» Cpvn's s Cavims» aNA
Covn 11, have “frequencies” 0, 2, 2-2%, 2.3, .,
2w’ +1)'2

We shall exhibit the solutions obtained in this way for
the case n’ = 1, without the details of the derivation. One
finds
Cnv;lZ (t) == 6711 6\/2 - %5710 (6v4 + 6v5 )Sin(Zt)

- [6':0 (6v2 + 6v3 + 6«6) - 6::1 61/1 ]Sinzt’

Craiia )

= 6,06, — %‘Sno (6,4 + 6,5)sin(2¢)

- [5n0(5v2 + 6\/3 + 6»6) - 6!:! 5vl ]Sinzt’

cnv;14 (t )

= %6,.1 ((5‘,4 - 5,,5) + %(5;;0 + 5n1)(5v4 + 6v5)

XCoS(2¥2t) + (278,58, +8,5 +8,6) + 27736,

+8,;+8,6—8,)—2""28,8, Jsin(2*?1)
~16,0(8,4 + 3,5)cos(2¢)
~1[8,0(8,2 + 8.3 + 8.6) — 8,18, Isin(2t),
Cnv;ls(t) = an14 @)+ 5n1(6v5 —8,4),
16 ()
= £6n0(6v2 + 5;/3 + 5v6) + %‘Snl(évﬁ - 5«,1 - 5v2 - 5\‘3)
+ 8,50, + [46,0(0,2 + 8,3 +d.)
+16,00,2 +8,5 +6,6 —8,1)—8,,6, ]COS(ZBIZt)
272,06 + 8,)6.4 + 8,5)sin(2*%1)
~ [6,0(5,, + 6,5 +8,6) —8,,8,, Jeos(21)
+ 8,0(8,5 + 8,5)sin(2t)
Crvat (1) = —136,000,2 + 6,5 +8.,)
+ 10, +8,, + 8,3 +8.6)+ 18,8,
+ [ = 18,00, + 8.5 +8.6) — 8.
X8,z +6,3 +6,6 ~6.1) + 16,0, Jeos(2>%2)
+27Y 8,0 + 8,1 )G, + 8,5)5in(2*1)
+1[8,0(6.; +8,5 +8.6) —8,,8,, Jeos(2t)
—18,0(8.4 + B.5)sin(2s). @7
One notes that there are no secular terms in the solu-
tions for the ¢,,,.,.,, forn’ =0and n’ = 1, i.e., t appears only
inside trigonometric functions and not algebraically. This
result is in fact quite general, i.e., it holds for all of the c,,,.,,.,.,
not merely for those with n’ = 0 and 1. Although a proof

could probably be constructed by thd d-matrix method of
this section, the proof'is simpler in terms of the more power-
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ful method of Secs. 6 and 7 and will therefore be deferred
until then. The absence of secnlar terms in # implies thay
when we evaluate the transformed Hamiltonian by putting
t = /2, factors of 7 will occur only inside trigonometric
functions and not algebraically. This is an important result,
since other iterative methods of solution can lead to secular
terms? which would require complication rearrangements
and resummations to remove.

5. HAMILTONIAN, PROJECTOR, AND PROJECTED
HAMILTONIAN

It follows from Egs. (2), (23), and (25) and Table I that
the Fock-Tani Hamiltonian H of Eq. (18) is given, in terms
of the solutions ¢, .., (¢ ) evaluated at “time” #/2, by

m
€iCoz,mw + £5¢ L
z 02; 1/(2) 2%03; (2)

+ vc()6;n'v’ (%) ]Bn'v‘ . (48)

The solutions (35), (44), and (47) allow explicit evaluation of
all of the terms with n’ = 0 and 1, and also those with#’ = 2,
v = 1, yielding
H=H,+V
H,= e.a'a+ e Yy, + &Yl
V=(v—e¢ DY, —€ awﬁ Ya —e€ aT'/’J{ Ya
+2- 5@ 2 n)e, [0 ¥ @ + (@ Pstha)
+403+ cos(2'?m) e, a"Y Yl v, ,a
—1[3 + cos(2"*m) )€, (@) a* + - 49)

[ 1

where the terms not exhibited mvolve the operators

B, (TableI) w1th n'>2,v' =2 —6,as well as the B, [i.e,
(a")"a" ] with n'>3. Note the decomposition into a free-
composite and free-constituent Hamiltonain H, plus an in-
teraction term ¥, as in the previous work'™ on the Fock-
Tani representation. Recall that €, is the composite particle
energy, Eq. (5). Note also that the states |1), |2), and |@) of
Eq. (11) are exact eigenstates of H [including the omitted
terms ...” in (49)] with eigenvalues €,, €,,and €, , respective-
ly. The compos:te particle is stable (an energy eigenstate)
and hence there are no spontaneous breakup and recombina-
tion terms ¥} ¥/} @ and a'y,1, in ¥, a property expressed alge-
braically by

Via)=0 (50)

Again, this is as in the previous work®; however, we now
have exact, explicit expressions (in this simplified modet) for
some terms which were previously only evaluated
approximately.

The projector R onto the physical subspace 7' of the
Fock-Tani state space ¥ is given, according to (19), @n,
(23), (25), and Table I, by

— "
=5 =L 500 (D) 1)
n=0 -
Again evaluating all the terms with n’ = 0, 1 and those with
n'=2,v =1, one finds
R= 1- {49 —a'ylya —a'Yiya
+2a"yl Yl hha — Y@y + -, (52)
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where the terms “...” not exhibited involve the same opera-
tors as in (49). Note that the terms proportional to sin (2!/7)
and cos (2'/%7) have cancelled. The projected Hamiltonian
(14)is

% = RH = HR, (53
since the operator P, of Eq. (19) commutes with H, therefore
R commutes with H, and R is a projector and hence idempo-
tent, R?=R. Multxphcatxon of the expressions (52) and (49)
for R and H using Wick’s theorem or the commutation and
anticommutation relations, leads to the following expression
for the leading terms in the normal expansion of #”:

K =Ho+ 7

V= @~ €)W lUb — (e, + el ya
— (€, + €2a"W} 1.0 + Qe, — v)a"Y Ylupha
— €, (@a + -, (54)

in which H, is the same unperturbed Hamiltonian as in (49),
whereas 7 has terms of the same structure as ¥ but with
different matrix elements. It is interesting to note that RV
vanishes by cancellations between various contributions; all
the contributions to both H, and 7" in (54) come from RH,,.

It is easy to demonstrate explicitly that the expression
(54) has the desired projection properties

H\1,2) = |1,a) = H(2,a) = H|1,2,a) = ¥ |a,a) =0,

(55)
for the states

11,2) = ¢1¢1|0),]1,0) = ¢]a"|0),|2,a) = ¢}a"|0),
11,2,0) = ¢1¢1a"|0), |a.a) =27"2(a")*|0), (56)

lying in the unphysical subspace # 6. of the Fock-Tani
state space . . This unphysical subspace is of infinite dimen-
sionality, there being an infinity of other unphysical states
also annihilated by 7 in addition to the ones (55); however,
an explicit demonstration would require the terms in #” be-
yond those exhibited in (54). 7 has the same elgenvalﬁes as
H on the physical subspace " spanned by the four Fock—
Tani states 10), 11), |2), ad la) [Eq. (11)). In fact, one finds

F10) = H |0) = Hyl0) =0, F|)=H|I)

ZHID= e,

KD =H|2)=HyD)=6|2), Fl|a)=H|d)

= Hola) = ¢, [a). 7

The physical states are all annihilated by both ¥ and 7"
VI =20)=0, ¥I1)=21)=0,
(58)
Vi)=71)=0, Vi)=71a)=0,
since H, incorporates the internal interaction energy of the
composite as well as the free-constituent energies.

6. STATISTICAL RENORMALIZATION

The form of the solutions for H, R, and 7%, involving
increasing powers (a%)" to the left and a” to the right of the six
operators By, , suggests a different choice of operator basis
than the fully normally-ordered one of Table I. The products
(a")"a” are related to the boson number operator N, =a' a
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by the identity
(@h"a" =N,/(N, —n)!
=N,(N, = 1)(N, —n +1). (59

Furthermore, one has the identities
aGN)=GWN, +1a, a'GWV,)=G{N, —1a', (60)

for any function G of the operator N, . It follows that H, R,

and # can each be represented as a linear combination of

the operators B, of Table I, but with coefficients which are
functions of N, rather than c-numbers. We can define a re-
duced aperator basis { B, } to be a set of operators which are
linearly independent in the generalized sense that an equa-

tion of the form

3G,(N.)B, =0, (61)

implies that each G, (N, ) vanishes separately. The basis is
also required to be sufficiently complete that all operators of
interest can be written as linear combination, with coeffi-
cients which may depend upon N, of the B, . This process of
allowing the coefficients to depend upon the occupation
number operator N, is what is meant by the terminology
statistical renormalization; the physical significance will be-
come clearer after we have evaluated the closed-form expres-
sions for H and 7. The above statement that the basis { B, }
must be “sufficiently complete...”” means, in our application
to the evaluation of Tani transforms (22), that the set { B, }
must be closed under commutation with F, but again in the
generalized sense that the coefficients in the linear combina-
tions are allowed to depend upon N, . Such bases are easy to
construct. Starting with a set of operators B, whose Tani
transforms are desired and which are linearly independent in
the renormalized sense (61), one evaluates their commuta-
tors with F, adjoining each new linearly independent opera-
tor which arises to the set { B, }, and continuing until the set
closes.

The transforms ,(¢ ) and #,(¢ ) of the constituent field
operators are of interest in themselves since they determine
the transformation of states from the original Fock space &
to the Fock-Tani space # . Furthermore, it is clear from (2)
that the transformed Hamiltonian is expressible in terms of
these fields and their hermitian conjugates ¥{(¢) and ¥} (¢).
Let us therefore first consider the bases appropriate to evalu-
ation of ¥,(¢) and #,(¢ ). For the case of ¢, evaluation of
commutators with F shows that the four-dimensional basis
of Table II is both linearly independent in the sense (61) and
complete with respect to #,(¢ ) in the sense that ¥,(¢ ) is ex-
pressible as a linear combination of the given B, with coeffi-
cients depending upon N, . The transforms (22) of these basis
elements can be expanded as

B,()= 3G, (N,1)B,, (62)

with coefficients G,,, to be determined. Note that the G,,, do
not commute with B, and B,, so it is necessary to pay atten-
tion to the order. Using the identities

B,G(N,) =GN, +1)B,, B,GN,)=G(N, +1)B,, (63)

which follow from (60), one can always write operator ex-
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TABLE II. Reduced operator basis for ¢,(¢).

v B,

1 ¥,

2 Yia

3 Wiy,
4 Vdida

pressions so that the basis elements B, are to the right and
their N,-dependent coefficients to the left, and we shall take
this as the standard order, as in (62).

The B, (¢) satisfy the equations of motion

Bv(t) = ZGVV'(Na’t)BV'
=Z[GVV(Na’t)BV"F]— . (64)

This commutator has to be rewritten as a linear combination
of the B,. with the B . on the right and their N,-dependent
coefficients on the left. It follows from (15) and (60) that
[G,,(N,,t)B, ,F]_
=G, (N,,t)B, (Yl ¢la —a'¥.9)

-G, (N, +1,1)¢}¢iaB,

+G,, (N, —L,t)a'y,¥,B,, (65)
and the factors to the right of the G,,,, can be written as linear

combinations of the B,. by use of Wick’s theorem or the
commutation and anticommutation relations. Define three

D-matrices (D,..,), (D,,, *), and (D,,. ~) by
B,(¥{¢la —a'pyy) = >D,,(N,)B,, (66)
- 'ﬁ]f w;a‘Bv = sz' * (Na)Bv”

aT¢2¢1Bv = Zva' B (Na )Bv' .
Then (64) can be written as

3G Wot By = 3 [Go (N,.)D,.,- 'WV,)

+ va‘ (Na + lﬁt)Dv‘v' * (Na)
+G,, (N, —Lt)D,,- ~(N,)]B,-. (67)
Interchanging the summation indices v' and +" on the right

and equating like basis elements B,,, one finds the equations
of motion

Gw' (Na ’t) == Z [va” (Na ’t)Dv"v' 0(I\Ia)

+G,.-(N, +1t)D,., *(N,)
+G,-(N, = 1,1)D,.. ~(N)] (68)
or in matrix notation
GWV,.1) = GV, )D°W,) + G(N, +1,1)D*(N,)
+ G(N, — 1,t)D~(N,). (69)
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These equations of motion are to be solved subject to the
initial conditions
wa Na ’0) = 5w (70)

which follow from (62) and (22).
The explicit expressions for the D-matrices relative to
the basis of Table II are easily worked out and are exhibited

in Eqs. (71)~(73):

0 1 0 1
n_ 100 —@,+1 0
B ) = 0 1 0 1]’ D
0 0 0 0
[0 0 0 —1
e I
10 0 0 0O
( 0 0 0 0
B —-N, 0 N, O
@)= 6 o o o (73)
| ¥, 0 —-N, 0

The explicit forms of the equations of motion (68) are then
G, (Not) = —N,G,(N, —Lt) + N,G,(N, — 1,0),
G (Not) =G (Not) + G5 (N, 1),
GyWNort) = ~ N, + DG, (N,.t) + NG, (N, — L,t)
—N,G. (N, —1,1),
Ga(Not) = G, (N 1) + Gy (N, 1) — G (N, + L,t). (74)
Differentiating the first equation and substituting from the
other, one finds
G (Npt) = — NG, (V,.0), (75)
of which the solution satisfying the initial conditions
G, (N,,0) =6,
G, (No0) = —N,G,,(N, —1,0) + N,G,, (N, —1,0),
(76)
=N,(6,s —6.2)
is
G, (N,t)=8,cos(NVt)+ (5,4 —8,,)N *sin(N /%).
an
Similarly differentiating the equation for G,,, one finds
GVt = — N, + DG, W, 0), (78)
of which the solution satisfying the initial conditions is
G, (N,it) = 6,,008[(N, + 1) | (79
+ (8, +8,)\N, +1) ~Visin[(N, + D)V ].
The equations for G,, and sz can then be solved directly for
G, and G,,, giving
G, (N, t)= —8,(N, + 1)Zsin[(N, +1)"t ]
+ (6, + 8,2)cos[(N, + D" )
—8,,cos(N ?t) + (5,, — 6,4)N %sin(W 1?t),
G (N,t)= 6,(N, +1) " *sin[(N, +1)"*t ]
+ 8. cos[(V, + 1) ]. (80)
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TABLE 111. Reduced operator basis or #,(z ).

v B,

! ¥,

2 Yia

3 ¥4
4 h v

The desired Tani transform ,(¢ ) is, in the notation of Table
11, equal to B,{t), and one then has by Eq. (61)

$it)= cos(N )y, + (N, + 1) ~sin[(N, + 1)1 ]
X¥ia + {cos[(N, + 1)t ] — cos(NV 1)} ¥} s,

@81

The derivation of the explicit expression for ¥,(7 ) proceeds in
the same way, The appropriate choice of basis is that of Table
I11. The derivation differs from that of (81} only in notation
and a few sign changes, and we shall only give the result:

Di(t) = cos(NV 2t Y, — (¥, + 1) ~2sin[(V, + 1)t JYla
— {cos[(N, + 1)t ] — cos(N [*)} ¥l ,¢,. (82)

The power of the method of statistical renormalization
should now be evident. We have found closed-form expres-
sians for ¢,(t) and ¢,(¢) by calculations which are almost
trivial (once the appropriate mathematical framework has
been erected), whereas the method of Sec. 4, based on com-
pletely normally ordered expansions, would lead to an infi-
nite series of terms whose complexity increases rapidly with
order, such that the general term could probably not be
found at all. Indeed, if one attempts to derive the normal
expansions by reordering of the functions of NV, appearing in
Eqgs. (81) and (82), one rapidly finds that it is a formidable
algebraic problem.

The transformed Hamiltonian H of Eq. (18) is given
according to (2) by
H= 51*@ Py + 52‘@‘/_’2 + W@ T@ 22N
with

b=U""9U, ¢,=U""hU (84)
According to (22) and (23) these transforms are obtained by
evaluating ¢,(¢) and ¥,(¢) at “*time” 7/2, yielding

(83

= cos (N D)y +- @V, +1) 7

Xsin [(Na + 12 —;L ]¢§a + {cos '[(N‘z + 12 .’ZL ]

— cos (N:,/Z %) ]t//; RN

¥, = cos (N vz %),/,2 W, 412
e

—cos (W27 2) ot w0, (85)
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Itis amusing to note that the operators ¢, ,, ¢, and Y} are
mfieed Fermi operators, i.e., they satisfy the elementary fer-
mion anticommutation relations (1) even though they in-
volve boson operators g, a' via N, = a'q; the proof involves
use of (60) and trigonometric identities. The expression for
H is found by substitution of (85) into (83) and use of (60)
and the commutation and anticommunication relations; we
shatl only exhibit the result:

H= ¢,sin’ (N L2 —;;) + [fl — €,sin’ (N:,/Z 1) ]1/4 ¥,

2
+ |e—esin? (¥12 2) Juty,
+ le, [N 7 V2sin(N *mat vy,
LN - sn V)

+ (u + €,cos’ [(Na + 12 i;— ]

— €,c08° (N b %) }rfﬁ;‘ Yy, (86)
This is the exact expression of which (49) is the first few
terms of the normal expansion. It is clear (at least in this
model) that it is great advantage to leave the functions of the
occupation number in their given forms and not to reorder
them into normal expansions.

To evaluate the projected Hamiltonian % we need the
projector R of Egs. (19) and (20). In principle, exp(iN, &)
cauld be evaluated by the D-matrix method (using a different
choice of operator basis) but it is more efficient to make use
of the previously obtained resnits in the evaluation, It is easy
to show either algebraically or from the physical interpreta-
tion that the operators N, + #]¢; and N, + #}¢, commute
with F; hence

N =N (Z) =N+ vlv - dlw,
=N, + iy, — Q;Qz
Using the expression (85) for f, ot ¢, one finds after algebra-
ic reductions
N,
= N, ~sio? (N2 D) st (822 D)l + v
— N sin(N Vomatyy,
— WV, + 1)~ Vsin[(V, + )7 Wl vla
+ L{cos(N ?7) — cos{(V, + )7 }¢ivlv,. (88)

We must next exponentiate this expression to find
exp(iN, ¢ ). This can again be done by an equation of motion
method. By forming products and powers of the various

(87

TABLE IV. Reduced operator basis for exp(ilV, ).

v 8.

vl i + i
3 a'fatly

4 e

5 v
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terms in (88), it is easy to show that exp(iN,, ¢ ) is expressible
in the form

exp(iN, %) = 25‘, G,(N,.9)B,, (89)

v=1
where the basis elements B, are given in Table IV. Differen-
tiating (89) with respect to «, one finds

SG,(N,9)B, = iN,exp(N, o)
= YiN,G.(N,.7)B,, ©0)

where the dot now represents differentiation with respect to
. Upon substituting (88), performing the algebraic reduc-
tions necessary to represent the right side as a linear combi-
nation (with N, -dependent coefficients) of the basis ele-
ments B, and equating coefficients of like basis elements,
one obtains the following differential equations for the G, :

G,N,,8) = i[N,, — sin? (N},/2 %) ]Gl N,, &)

— N %sin(N [*m)G(N, — 1,8),
G (N, 8) = iN,Go(N,,3) + isin® (N % %)G, N,.3)

+ 4N SinV VTGN, —1,9),
GiW,.9) =i [N, —sin’ (v Z) ]Gaava,o)
— LN S Vsin(N V20 [G,(V, — 1,8) + G«(N, —1,8) ]
- iNa_ I/ZSin Ntlz/zﬂ-)G2(Na - 1’0 )’
Gd(Na !19)

= i{Na + sin? [(N,, + 12 %] ]G4(N,,,19)
— LN, +1) ~Vsin[(N, + )7 ]GV, +1.89),

Gs(N,,8)=1i lNa + sin? [(Na 4 1)1 %] }Gs(Na,ﬂ)

+ 2isin? [(N,, +1)2 % ]G2(Na )

+ li{cos(V /*m) — cos[(V, + 1)'*7 ]} G,(N,,8)

— JiN sin(V *m)G(N, — 1,8)

— J(N, +1)'"sin[(V, + D7 ]GV, +1,8). (91)
These are to be solved subject to the initial conditions

G,(N,,00=1; G,(N,,00=0, v>2, 92)
following from (89) and Table IV. Addition of the first two
equations gives

d
E [Gl(Na ’19) + G2(Na70)]
=iNa [Gl Na’0)+G2(Nqﬂ?)]’ (93)
whose solution subject to the initial conditions is
G\(V,,#) + Go(N,,9) =", %4

which can be used to eliminate G, from the third and fifth
equations. The first and fourth equations can be combined
into a single matrix equation
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d Gl(Na ’1?) p Gl(Na !0)
—_— = iM(V,) ) 95)
dd LGV, —1,8) GN, —1,9)
where the elements of the matrix M are
M,, =N, — sin? (N;ﬂ —2”-) ,
M, = — N %in(N )m),
My = — N 7 Vsin(V ¥m),
My, =N, —1 + sin? (N;/2 %) . (96)

The solution vector is a linear combination of the two eigen-
vectors of M. The eigenvalues are the solutions of the secular
equation

[M,,(NV,) — A J[Mn(N,) — A ] — M ,(N,)M,(N,) =0,
©n
of which the roots are
A, (N,)=N,, A_(N)=N,—1 (9%)

The determination of the solution satisfying the initial condi-
tions (92) is then straightforward; we give only the result:

G,(N,,%) = cos? (N n %)em“"
+ sin® (N 1z %)e‘w" b

G(N,,8) = IV, +1) ~sin[(N, + 1)"?7]

% [eiN,,a _ ei(N,, + 1) ] (99)
Then by (94)
G,(N,,¢) = sin? (N 172 %) [¢7? — ™17 ], (100)

The third and fifth equations (91) can also be solved by the
matrix method, taking G, and G, as known inhomogeneous
terms; we again give only the result:

G(N,,3) = 4N 7 *sin(V 1*m) [V 17 — &™),
GS(Na ;0 )

= sin?| @, 412 I [ o0
“ 2
- [sin2 (N,‘/2 %) + sin’ [(Na +1 % ] ]
x ™ | sin? (N;/z _;L)ei(N.,— Do (101)

The final expression for exp(iN, ) given by Eq. (89) and
Table IV is then

exp(iN, ¥ ) = cos (N 172 %)e’w"" + sin? (N 12 %)e'w" —e

+ sin? (N % %) [ — ™= Yyt g, + L)

+ N 7 Vsin(N 2y [0 — o™ Jatep,p,
+ 3NV, +1) ~Zsin[(N, + )7 ] [ — M09 1yt yty

+ [S-lIl2 (1\"11/2 %)ei(N”* o + sin2 [(Na + 1)1/2 —72" ]ei(Nﬁ + D
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— sin? (N;/2 %)ﬂ«" — sin® [(Na + 1)1 % ]e'“ﬂ'?]ﬂ v,

(102)
The projectors R can now be evaluated by performing the
integrals over 3, using the representation

R=(m)" ‘f d9 exp(iN, &) (103)

following from (19) and (20). Equation (20) generalizes to

27 3
P, =Qm" lf dg e ™", (104)
(8}
where P, is the projector onto the subspace of # spanned by
eigenstates of N, with eigenvalue #. One has the obvious
identity

P.GWN,)=GWN)P, =G(mP,. (105)

Furthermore, there exist on eigenstates of N, with negative
eigenvalues, so the terms in (102) involving ¢ inte-

grate to zero. One then finds a very simple expression

Iiz 1:0 +}z1 —131(1%!01 + ‘/’;'ﬁz)
+ (P, — P 3t (106)
Upon multiplying this by (85), applying the identities (105),
one finds the following expression for the projected
Hamiltonian
H = eaI:la*a + (6, — P Y, + (P — 6a1:1)¢;1/’2
+ [(v— €,)P, + €. P, ]¢I¢;l//211/1 (107)

In view of Eq. (105) the factor a'a = N, in the first term
could have been omitted; however, it is included in order to
facilitate the physical interpretation which will be discussed
in the next section. The very simple expression (107) for #°
could have been obtained without all the elaborate machin-
ery of the Tani transformation, D-matrix, etc... in this simple
model. However, for realistic systems trivial representations
such as (14) are not available, and the Fock-Tani representa-
tion has definite physical and mathematical advantages
which have already been discussed.'* The methods that
have been illustrated here ought to be applicable to realistic
systems as well, although one can hardly expect closed-form
solutions in the general case.

7. STATISTICALLY RENORMALIZED HAMILTONIAN

The physical interpretation and generalization to realis-
tic systems require a more explicit expression than (107), in
which the projectors P, and P, are expressed as functions of
N, . The most convenient representation for our purposes is
obtained by changing the limits of integration in (104) to
[ — m,7], taking advantage of the fact that N, has only inte-
gral eigenvalues. The integration is then trivial and yields the
representation

P, =jo((N, — m)m),

where j, is the spherical Bessel function of order zero,
Jo(x) = sinx/x. Since

Jo®) =1; jynm)=0,

the desired projection properties of the representation (108)

(108)
(109)

h= i 17 i 29"')
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are evident. One then finds the following expression for the
projected Hamiltonian (107)

% = ea (Na )aTa + e'l(jva )'pl‘ lpl + 6-Z(IV'a )'p; 1//2
+ (N Y ¢, (110)
where €,(N,), €,(N,), and €,(N, ) are statistically renorma-

lized single-particle energies and similarly v(N, ) is a statisti-
cally renormalized interaction, defined by

€,(N,) = €jol(N, — )},

Gl(Na) = 6-1./'0("]\71777-) - 6aj0((Na - 1)77-)9

€(N,) = € Jo(N, ) — €,jo((N, — D)),

UN,) = — €)oN. ) + €,jo((N, — D). (111)

It was noted in Secs. 4 and 5 that secular terms (powers
,7,+-) do not appear in the normal expansions for either H
or # to the orders exhibited in Egs. (44) and (54). This
result is in fact valid in arbitrary order, as can be seen by
noting how the normal expansions can be generated starting
from the statistically renormalized expressions (86) and
(110). The proof is simpler for 7. It follows from (110) and
(111) that the normal expansion for 7 can be obtained im-
mediately once those of j(N, 7) and j (N, — 1)7) are
known. That of j,(V,7) is already known from Eq. (21)

N =P= 3 D ) @ya".

n=0

(112)

The normal expansion of I:, can be derived by the same
method? as was (112). One has

Y c.(ah)a",

n=0

JolN, —Dm)=P = (113)

with coefficients ¢, to be determined. Letting |n) be the ei-
genstate const. (a")"|0) of N, with eigenvalue #, one has suc-
cessively, with (59),

121|0)=CO=0’
Elll)zclll)z |1),
EIIZ) = (2 4+2¢,)[2) =0,

=1,

c,= —1,

Izll3) =(3—6+6¢;)[3)=0, c;=1,

¢, = 1(n-1) (114)
and hence
@, —nmy=p,= § =D @y, (115)

w=1 (n =1
Substitution of (112) and (115) into (110) and (111), noting
that j((N, — Dm)a’a = j,((N, — D)), yields the complete
normal expansion of %, of which only the first few terms
were exhibited in Eq. (54)

H =3, +V
7= 3 L0 (@4 e, - o)@)ulg e

Y e+ ne, )a" 'yl a"
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+ 3 S @ ne@ryiga
& (="'
+ €, ,,;z Y @Ha"

Here H,, is the unperturbed Fock-Tani Hamiltonian
(49). No secular terms (powers of 77) appear in the expression
(116). Note how easy it is to obtain the general term in the
normal expansion once the (nontrivial) task of determina-
tion of the statistically renormalized expression for 7% has
been accomplished. Note also that the statistically renorma-
lized expression is much simpler, both in mathematical form
and in physical interpretation, than the completely normally
ordered expression (116).

The determination of the normal expansion for the un-
projected Hamiltonian H can be done in the same way, al-
though the algebra is more complicated. According to (86)
one needs the normal expansions of sin*(¥ }/%7/2),
cos¥(N \27/2), N ;7 '*sin(N /*mr), and
cos?[(V, + 1)!27/2]. These can be determined as in (114),
(115); one finds

(116)

sin’ (N 12 %) =a'a+| — 3 — cos2"*m)| (@'Y’a’

+ [+ Feos(2'?m) — Leos(3'2m)) (@"y’a’ + -,

cosz(N‘/21)= 1 —sinz(N’/zl),
2 )

N ;7 %sin(N 27) = 2 =3 %sin(2*7)(a™a?)
+ [ —27*2sin2V*m) + 4-3 7*?sin(3"*m)]
X(a'f)3a3 + oy

cos? [(N,, + D2 —121 ] = [} + Jcos(2'*m)]a’a

+ [ — 4 — cos(2V?m) + icos(3'*m)|(a")?a®
+ [ 15 + Jeos(22m) — lcos(3"*m)

+ ﬁcos(4"27r)] @h’a® + - (117)
Substitution into (86) gives terms in the normal expansion of
Hbeyond those exhibited in (49). It is clear without attempt-
ing to evaluate the general term that no secular terms appear
in any order. The statistically renormalized expression (86)
is much simpler and preferable to the completely normally

ordered expression.

8. LINKED VERSUS UNLINKED EXPRESSIONS

Consider the action of the various terms in the normal
expansion (116) of 2" upon a state (a")"|0) with a specified
number m of bosons. In view of the identity (59), it is clear
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that for m—s oo, the terms in (116) with index n give energy
contributions of order m”, assuming n fixed as m— oo. The
contributions for n > 2 are “hyperextensive”, i.e., increase
more rapidly than linearly with m as m— o . This type of
unphysical behavior is typical of the unlinked clusters in
Rayleigh-Schrédinger perturbation theory of a many-parti-
cle system. In fact, if one introduces a diagram notation for
the various terms in 77, then each term with a factor (@")" on
the left and a” on the right is represented by a diagram con-
taining » free boson lines disconnected from the rest of the
diagram. Actually, the unlinked terms all cancel when com-
bined properly so as to pass to the statistically renormalized
expression for #°, This is clear from (110), in which there are
no unlinked terms. Some of the unlinked terms of (116) are
absorbed into the definition of the renormalized single-parti-
cle energies €,(N,), €,(N,), and €,(N, ), while the rest are
included in the definition of the renormalized interaction
vertex v(V, ). The statistically renormalized expression (110)
is therefore analogous to the expressions obtained in linked
cluster forms of many-particle perturbation theory. This is
still another reason for the superiority of the statistically
renormalized representation as compared with the usual
normal series. Indeed, it shows that the procedure of statisti-
cal renormalization is essential for obtaining physically cor-
rect results in the Fock-Tani representation for a system of
many composite particles as soon as one goes beyond the
lowest-order terms in the normal expansion. The simplified
model investigated here does not really allow many-boson
states, but these observations should be relevant to more re-
alistic models.
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We derive an explicit formula for the resolvent of a class of one-particle, many-center, local
Hamiltonians. This formula gives, in particular, a full description of a model molecule given by point
interactions at # arbitrarily placed fixed centers in three dimensions. It also gives a three-dimensional

analog of the Kronig-Penney model.

1. INTRODUCTION

There are, broadly speaking, two kinds of methods for
constructing explicitly soluble one-particle quantum-me-
chanical models. One method is the reduction of the prob-
lems to questions involving soluble ordinary differential
equations (e.g., by partial wave expansion). This method al-
most never gives closed explicit formulas in many-center
problems, which arise naturally in molecular and solid-state
physics.

The second method is essentially finite-dimensional lin-
ear algebra. It works if the potentials are separable (i.e., of
finite-dimensional range as operators; such operators are
also called of finite rank, or degenerate). The drawback of
such potentials is that they are nonlocal and have no clear
physical meaning.

A well-known, explicitly soluble, local one-dimensional
Hamiltonian appears in the Kronig-Penney model’ (poten-
tial consisting of a periodic array of §-functions in one di-
mension). The reasons for its solubility are basically

(i) periodicity reduces it to a one-center problem; this is
easily seen in momentum representation.’

(ii) The “Operator of multiplication” by a §-function
has one-dimensional range (the map ¢—&,¢ can be written
as g—|x) (x]¢)).

(iii) In one degree of freedom, the expression
P’ + |x) (x| defines a self-adjoint operator in Hilbert space.

In more than one dimension, any attempt to write down
a local, separable potential ¥ for the Schrodinger operator
must fail, as is shown by the following argument: the combi-
nation of separability and locality forces ¥ to be a finite lin-
ear combination of §-functions (and perhaps derivatives of
S-functions). However, an expression of the from
P’ + |x) (x| cannot define a reasonable operator in Hilbert
space if the number of degrees of freedom is greater than one.
(The reason for this difference between dimension one and
higher dimensions is well understood; it will be discussed
below.)

We shall show in this paper that it is nevertheless possi-
ble to construct, in two or three dimensions, a class of quan-
tum-mechanical Hamiltonians which correspond exactly to
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the idea of one-particle feeling point interactions at  fixed
centers, placed arbitrarily (or at an infinite array of such
centers). These Hamiltonians are explicitly soluble, in the
sense that all questions about bound states, resonances, scat-
tering, etc., are answered by explicit formulas involving only
finite-dimensional linear algebra and zeros of known
functions.

The class of models that we study includes

(i) “molecules” in two and three dimensions,

(ii) two- and three-dimensional analogs of the Kronig—
Penney model, and their perturbations by impurities (see
Ref. 3),

(iii) dipoles in one dimension.

There is no contradiction between these results, and the
statements about nonexistence of local separable potentials.
The Hamiltonians that we study cannot be written in the
form p* + V. (At least not in standard analysis and present-
day distribution theory. See Ref. 4, and remarks below.)
They will be defined here by an explicit expression for their
resolvent or, equivalently, by a “parametric” description of
their graph.

This procedure is not new by any means. It can be
viewed as a special case of general results of extensions of
symmetric operators,’*¢ and abstract boundary value prob-
lems.” We shall not use these results, but give instead a self-
contained elementary presentation, involving nothing more
than linear algebra and properties of Sobolev spaces.

The point interactions that we study are, in the one-
center situation, a limit of boundary value models.® They
have been used in the study of two- and three-particle sys-
tems (see the excellent review article by Flamand®) and are
implicit already in early discussions of low-energy nucleon—
nucleon scattering.'’

Some of the Hamiltonians in this paper have been pre-
viously studied by methods of nonstandard analysis,* and by
other means."** They have been the subject of independent
work by L. Thomas.'

The remainder of this introduction contains a descrip-
tion of our results in a particular case. Secs. 2 and 3 contain
general proofs; Sec. 4 discusses locality, spectral properties,
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and some applications. Subsequent papers will deal in detail
with periodic potentials and with limits of regular local
potentials.

Let x be any point in R?, and a any real number. Then
there exists in the one-particle Hilbert space %, = L 2(R*)a
self-adjoint operator H % with resolvent QX (E)

= (H} — E) ' given by the formula

Qi(E)=R(E)+ (/47 + a) " 'R(E)|x) (x|R (E),
(1.1)
EeC\[0w), E?>= —k Rex>0, «+ 4ma0.

Here R (E) is the resolvent of the kinetic energy opera-

tor: R (E) = (T — p*) ', where (T¥)( p) = p*¥( p) in mo-
mentum representation. The dyadic |x) (x| is, again in mo-
mentum representation, the map ¥( p)—(2m) —*
X (S e PyY( p')d *p')e”™. Noticethat R (E )|x) (x|R (E )isa
bounded operator in 5%, since ( p> — E) ™ 'e ~ " is square-
integrable. The operator can also be defined as the Laplacian
with appropriate boundary condition at x.

The negative denominator in (1.1), i.e.,

rE)= —«/dr—a E= —), (1.2)
was obtained as the solution of
%’Q = (IR (EYIx), (1.3)

ie.,
r'E)= fE (x|R (E"Y|x) dE",

— a being the arbitrary integration constant. The rhs of
(1.3) is given by the absolutely convergent integral
@m) ~? § (p* — E)~ *d’p. Equation (1.3) follows from the
fact that, as a resolvent, @ must satisfy dQ /dE = Q2.

The operator H 7, is the limit as - (in the sense of
norm resolvent convergence) of the family of operators

Hi*=T—12(02) (®¢], (1.4)

where the dyadic |® ?) (® 2| is the bounded operator given,
in momentum representation, by

Up—en ([ e rupaplome (0.9

(B.(£)=1if¢(<w, and B, (£) =0if £ > w), and where
A2 = [w/27 —a] . (1.6)

Notice that (1.6) tends to zero as @ — 0 and
|® %) —|x).So H, should not be thought of as a Hamilton-
ian with a §-function potential, but rather as a Hamiltonian
with an infinitesimal coupling constant in front of a §-func-
tion potential. This description can be made rigorous in the
language of nonstandard analysis,'® and the operator H *
has been treated in this way in a preceding paper.*

Remark: The classical functions corresponding to the
operators (1.4) tend to p” in the sense of distributions. It
should be interesting to endow spaces of functions in phase
space with topologies better adapted to operator conver-
gence and to study the “classical” meaning of the operator
HZ.
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Remark: The operator H; can also be obtained as a
strong resolvent limit of Hamiltonians with attractive local
short-range potentials: H =1lim, [T+ A,e~?

X (1 + ae)V, | where V.(x) = V (¢~ 'x), and where 4, is
suitably chosen. This limit will be discussed in a forthcoming
paper. Notice, again, that € =2V, = ee ~*V_ and thate ~*V,
tends to a 5-function.

If @ <0, then the operator H; has a bound state at

K, = —4rna, )]
i.e., at the energy

E, = — (4r)a’. (1.8)

Ifa > 0, then H } hasaresonanceatx, = — 4ra, since

— 4qra is then in the “unphysical half-plane” Rex < 0.

The operator H %, is local, in the following sense: If ¢ is a
smooth function (in the x-representation) and if ¢ vanishes
in an open set &, then the function H } ¢ also vanishesin 7.

Two-center Hamiltonians: Let x, and x, be two points
in R, and let

(a n a 12)
o =

dyy
be any Hermitian 2 X 2 matrix. Then there exists in the one-
particle Hilbert space 5%, = L *(R?) a self-adjoint local op-
erator H "™, with resolvent Q" (E)=(H "™ —E) ™!
given by the formula

QI E)=R(E)- 3 3 [FE) ],

j=10i=1

XR(E)|x; ) (x;|R(E),

(1.9)

(1.10)
where I'(E) ~ ! is the matrix inverse of the matrix I"(E)
= " *"(E) given by the formula

[(E)=@m)~!
—K %, —x, | "e_"l"‘_x’I)
x(lxl —x, | Tle —K -
(1.11)

The entries of I'(£ ) in (1.11) have been obtained as solutions
of

d

25 [1E) =& IREYIx,), (1.12)
where
(x [REY|x, ) =@m) > f (P — )% 4%
(1.13)

is absolutely convergent, and the a’s are arbitrary integra-
tion constants. If the matrix a in (1.11) is diagonal, we say
that the two centers are independent. Again, (1.12) is a con-
sequence of the fact that Q is a resolvent.

The spectral properties of H ¢ , discussed in detail in
Sec. 4, correspond perfectly to one’s expectations based on
the intuitive image of a two-center problem: For instance, if
the distance between the two centers goes to infinity, and if
the two centers are independent, the bound states tend to the
corresponding “atomic” states. The resolvent (1.11) exhibits
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an infinite set of resonances, that can be visualized as due to
the particle’s bouncing back and forth between the centers,
before escaping to infinity.

The above statements are all special cases of results de-
rived in Secs. 2—4. The basic formulas (1.1), (1.11) follow
from the fact that the states |x) belong to the Sobolev space
& _,. Locality is made possible by the fact that off-diagonal
matrix elements (x, |R (E )|x, ) (withx, £x,) exist (as con-
vergent, but not absolutely convergent integrals), “as if” |x)
belonged to % _ | .

Thearbitrary constants o, can be viewed as generaliza-
tions of the inverse scattering length of low-energy scattering
theory. Here they are not derived from a Hamiltonian, but
appear as an input.

2. PERTURBATION OF 7 BY MILDLY SINGULAR
DYADICS

The aims of this section are mainly pedagogical. We
introduce the Sobolev spaces #° _ , and # _ , and define
the natural partial inner product in them. This allows us to
use singular dyadics which are a convenient language in our
problem. We discuss the relationships with operators in the
physical Hilbert space and stress the difference between
F _,and #° _,, which is the reason that one-dimensional
S-function “potentials” behave differently from two- and
three-dimensional ones.

Consider a quantum-mechanical system of v degrees of
freedom in momentum representation. Its space of states
&, is the Hilbert space of square-integrable functions

#,®@) =8| [ 1617 <ol @1

The kinetic energy operator 7'is a multiplication opera-
tor by a positive unbounded function # ( p). (In most cases of
interest, £ (p) = p? + - + p2 after suitable choice of units.)

(TXp)=1t(pb(p) 22

Define #7, (R*) as the space of states that give finite
expectation value to kinetic energy:

@)= o f(r(p)+1)|¢(p)|Zde<w], @3

and 57, (R") as the space of states such that the expectation
value of the square of kinetic energy is finite:

72w = s f(r(p)+1)2%¢(p>\2dvp<w],<z.4)

They are called first and second Sobolev space, respectively.
The duals of these spaces will play an important role in
our discussions. We define 5% _, by

@ =s|[ e+ D11 o)
2.5
and % _, by
7 @)=|p|[ e+ nispIar<a)
2.6)
Clearly

H,CH \CH,CH_,CH_,.
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The norm and scalar product in the Hilbert spaces 57,
(—2<r<2) willbe denoted by || ||, and ( , ),
respectively.

Remark: In order to treat the Kronig-Penney model
and its two- and three-dimensional analogues, we shall need
a slight modification of the definitions (2.1) to (2.5). Let A be
a lattice in momentum space (the Bragg, or reciprocal, lat-
tice) and let & be a point in R*. Consider the displaced lattice
k + A, and define 27, (k ) to consist of complex-valued func-
tions on the discrete set k + A satisfying

S )+ YIUPI < . @.7)

pek + A
So the integral f d *p is replaced by a sum over a displaced
lattice. All our general statements about the spaces 57, (R")
remain valid for the spaces 57, (k). Clearly k and k + K
(with Ke A ) give the same 57, (k).

Exampies

(a) It is particularly important to place exponentials
(which correspond to §-functions in x-representation) into
the right Sobolev spaces. Here the dimension v plays a cru-
cial role. Let ¢ (p) = p} + - + p2, and let

e py = 2wy~ e™?  (xeR", peR™). 2.8)
Then, for all x,
;e _ (R)
e;é% -1 (RZ) eex _, (Rz)
2.9)

e _(R) &e¥ ,(RY)
St (R (f v>4).

(b) 1t is interesting to consider, in one-dimension, de-
rivatives of the §-function (*‘dipoles™) at the points x, -x,,.
In momentum representation, they are given by the func-
tions (27) ~/? pe*™. They belong to # _, (R).

The free resolvent is the operator

RE)=T—-E)"", (2.10)

ie.,

REYNp) =(p)—E) '¢(p)
Wedenote by p(T') the resolvent set of T i.e., the set of E such
that R (E) is bounded as an operator in %7, If 1 ( p) = p’,
then p(T') is the slit plane C\[0 «). In 5, (k), p(T') is the
infinitely punctured plane C\(k + A1 ).

The square root R "*(E) will be defined [in p(T)] by
requiring it to be a positive operator if E is negative.

We shali be constantly using the following facts:

(i) R (E) satisfies the identities

R(E)—R(E)=(E—-ENRE)R(E,

4

dE

(ii) R (E) is a topological isomorphism (i.e., bounded
onto map with bounded inverse) from #°, to 77, __,.

Similarly, R “/*(E) is a topological isomorphism from
K, o, ., .

The scalar product in 5, can be extended to some

R(E)=R(E). (2.11)
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pairs of vectors in #°_,, such that one member of the pair
does not belong to 57°,. This makes 5% _, a partial inner
product space."" If @e%° _, and Wei” _, are such that
D, and Wei# _, for some r ( — 2<r<2), then the inte-
gral { @ ( p)¥(p) d*p converges absolutely and defines the
partial inner product

(@) =J<5(p)W(p)d”p.

Notice that:

(2.12)

(D, |R(E)P,) exists forall @, % |, @, _,, (2.13)
while

(¥, |R(EYV,) exist forall ¥, _,, V,e# _, .
(2.14)

These remarks, together with (2.11), will be essential
later on.

For any ¥'es” _,, W"e#” _,, introduce the dyadic
operator

&) (", (2.15)

as follows: Let #°, ( 7,.) be the smallest space 7, that
contains ¥’ (¥ "). (Remember that a small space 7, corre-
sponds to a big index r.)

Then |¥') (¥ "| is the bounded map from 5% _ . to
., defined by

(YY" DG)=(¥"|$)¥" (X _,.).

It is important to notice that, for any ¥'e%”_,,
Ve _,, that symbol

R(E)¥')(¥"|IR(E), .17

is well defined as a bounded operator in 57, . Indeed, if
¢, ,then R (E )pe#, . Consequently (¥ " |R (E )¢ ) isde-
fined. On the other hand, R (E)¥ 'eJ7,. So (2.17) applied to
peH,, gives (W"|R(E)¢ YR (E )W 'c 7.

There is no difficulty in defining sums of dyadics and
the product of a dyadic by a number.

The following shorthand notation will be useful: If

V= (¥, (2.18)

(2.16)

and
v ={¥y,. ¥

n

(2.19)

are n-tuples of vectors in #° _, (which we write ¥'e %™,
and W"e7"_,), and if B= {B;, ] is any n X n matrix, then
|¥')B(W"| is defined by

B = 3 3 |W)B,(¥]]

j=11=1

=3 3 B ¥) (¥

j=11=1

(2.20)

We can finally combine the notations: If Bis any n X n
matrix, then

R(E)|¥)B(¥"|R(E)
is shorthand for

i i R(E)|\¥')B; (¥7],

j=11=1

i.e., for the map that sends ¢, to

(2.21)

2379 J. Math. Phys,, Vol. 21, No. 9, September 1980

Z S (WIR(E)$)B,RE)V,.

i=11=1
Operators between spaces 57, are only a tool for the
study of operators in the physical space 77, .
To every bounded linear map A4,, from 77, C 7%, to
D F, we associate the natural restriction'’ of A which is
an operator (in general unbounded) in #°,. It is defined as
the restriction of 4 to the domain

D = (|6, A, ). 222)

In other words, the original domain 7%°, C 57, is cut down
by striking out exactly the vectors that are mapped beyond
#,. For instance, let T _ ,, be T as a map from 5, onto
& _ . Then the natural restriction of T _ |, is T considered
on # _,, its operator domain.

The natural restriction of a perturbation of 7by a sym-
metric dyadic |@ ) (@ | with ¥ _ , is self-adjoint. More
generally

Proposition: Let ®€™ |, and let Bbe an n X n inverti-
ble matrix. Then the natural restriction of 7 — |®)B(®| isa
closed operator in #°;. The resolvent of this operator is giv-
en by

R(E)—R(E)|P)I(E)~ (®|R(E), (2.23)
with I'(E ) defined by
I'E)=(®PREYD) B~ 2.24)

If B is Hermitian, then the operator 77— |®)B(®|, defined
by (2.23), (2.24), is self-adjoint.

Remember that a symmetric operator 4 defined on a
domain & C %, is self-adjoint if, for every nonreal E,
A — E maps & onto 57°,.

Wesstart the proof with a lemma that involves only 77,
and can be traced back to the beginning of this century.
Lemma: Let & = {¢,,...,4,] (¢,€%°,) and
V= {¢,,...1,] (¥;€). Let A be an invertible n X n ma-
trix. Assume also that A ~' — (1|) is an invertible matrix.
Then the inverse of the operator 1 — |d)A(| is

(1= 1O)AMWD =14 [$)[A " — ($[$)] (Y.
(2.25)

Proof: Direct verification.

Proof of Proposition: Notice that T — E is a topological
isomorphism (i.e., bounded with bounded inverse) from 5,
to#” _ |, and that |®)B(®| is bounded from the same 57,
to 7 _ | . (This is the place where the proof would break
down if we tried ®eF™ ,.) Write

T— |®)B(®| — E
=R~ VAE)[1 - R AE)|®)B(®|R (E)IR ~HE)

and use the lemma to invert the term in the square bracket.
The inverse of 7 — |®)B{®| — E, (as an operator from
F _, t0F°)), is then

RYE)[1 4+ RVAE)|®)
X[B~' — (@R (E)Y®)] ~ (@R "*(E)IR (E)
=R(E)—R(E)|®)[(®R(E)P) —B ]
X{®@|R (E).
Restriction to /%7, gives the assertion.
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Things are very different if we perturb T by a dyadic
|¥) (¥ |where ¥e2¥ ,and W¢57 _ | .Inthatcase, thenat-
ural restriction of T+ |¥) (¥ | is not self-adjoint but has a
family of self-adjoint extensions, which are not determined
by ¥. All of Sec. 3 can be viewed as the study of this family.

In order to understand this, it is useful to keep in mind
the proposition that follows.

Proposition: Let ¥e5%° _, and ¢ _ . Then the natu-
ral restriction of T+ |¥) (¥ | is the restriction of T to the
domain {¢ |pe#”,, (¢ |¥ ) = 0} (which can be dense in
).

Proof: Consider the condition

T+ (V|$)¥ = e, (2.26)
which defines the domain of the natural restriction. Since
WE5% _ |, we have necessarily ¢e%,, and consequently
T¢e#,. So Tp — e’ while (2.26) says that
T¢ — ¥y = (¥ |¢ ) ¥. This is a contradiction, unless
(¥lg)=0.

Notice the difference with the case @€#°_ . There
both T¢ and (@ |¢ )@ werein % |, and could sumuptoa
nonzero element of 577,.

Nevertheless, if, for fixed ®<#™ |, we consider the
Jamily of all operators T — |®)B(®| with Branging over all
invertible matrices, we obtain statements which remain valid
if @77 ,. This will be the subject of the next section.

3. THE OPERATORS H¥

Given n vectors ¥,,...,¥, in 7 ,, we shall define in
this section a family of closed operators {H {} in 77, la-
belled by n* complex parameters. In the mildly singular case
(Wesr™"_ ), H{ is a perturbation of T'by a dyadic of the form

— |W)B~ '(¥|. In the general case, H { is defined by an
explicit expression for its resolvent. All the examples of
physical interest will be special cases of this definition.

A. The vector ¥

Throughout the rest of this paper, we denote by

V= {y,.,¥,] 3.H
an n-tuple of vectorsin % _ ,, and make the assaumption that

(A) the vectors ¥,,...,¥, are linearly independent over
7y, i.e., such that no nontrivial linear combination £"4, ¥;
lies in #7,.

This assumption is made in order to avoid inessential
complications in the statements of results. It rules out the
case We. 77 (bounded degenerate perturbations of 7°) but
allows We7” | (mildly singular degenerate perturbations)
which were studied in the preceding section.

The examples of interest will be:

¥;(p)=Qm) "™
(v=1,2,3; peR", x,eR", j = 1..n)  (3.2)
(exponentials in dimensions less than three), and
¥, (p)=Qm)~ 'pe”™ (peR,x,eR,j=1,.n) (3.3)

(exponential times a linear function in one dimension), cor-
responding to a derivative of the 8-function in x-representa-
tion. We see that the assumption (A) is satisfied.
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B. The matrix family I'(£')

The n vectors ¥ €% _,, define a family of n” functions
I (E), each analytic in p(T") and determined up to an addi-
tive constant. These functions will be needed in the defini-
tion of H .

Define I';,(E) as any solution of

4 F(E)= (¥, [REV®,) EepT)jl=1,.n)

dE
G4
The rhs of (3.4) is well defined by Sec. 2. In the nota-
tions of Sec. 2, (3.4) is
d
—T(E)= (¥|R(E)*V). 35
1B (E)=(¥|R(E)¥) (3.5)
If I'(E) is any solution of (3.5), then the most general
solution of (3.5) is of the form
I'(E) —a,

where o is an arbitrary n X n complex matrix.
The particular solution of (3.5) that vanishes at a given
point E € p(T') is given by

(3.5)

r.(E)= JE (¥|R (E'YW)dE'
— (E — E,)(¥|R (E)R (E,)¥). 3.6)

In the special case that We#™ | (3.5) has a privileged
solution I'y (E) = (¥|R (E )¥), and so there is an “‘absolute
reference point” for the subtraction constant c.

The following properties of any I'(F) that satisfies (3.5)
(with e ) are easily verified and will be needed in the
study of spectral properties of H {:

(i) If Ee p(T') and E 'e p(T'), then

TE)-T(E)=E-EYREREN). 37

(ii) On the negative real axis, I'(E') is a monotonically
increasing matrix-valued function; that is, if

— ow <E<E'<0,then I'(E') — I'(E) is a positive definite
matrix.

(iii) On the negative real axis, the matrix

ImI(E) = % [T(E) — THE)] (3.8)

is constant (independent of E ).

(iv)I'(E ) isanalyticinp(T"). Its “unphysical sheet” con-
tinuations will be discussed in Section 4.

(v) IfFI(E) is a solution of (3.5), then I(E ) = I'(£) is
also a solution of (3.5). Here I'" is the Hermitian conjugate of
I and E, the complex conjugate of E.

C. Examples
Introduce the variable « by
K= —E, Rex>0. 3.9

So x is related to the variable & of scattering theory by k& = ix.
The “physical half-plane” Imk >0 corresponds to the “phys-
ical half-plane” Rex>0. The axis — «o < E <0 corresponds
to 0 <k < . A function which increases monotonically on
the negative real E-axis defines a decreasing function in the
positive real x-axis.
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(a) One-dimension §-functions: If W is given by
w.(p) = (2m)~ %™ (peR, x;€R).
Then the general solution of (3.5) is

1 — X—x’K
[yE)= 5-e ol _a (3.10)

Notice that here ¥, _,, and consequently the privi-
leged solution:

1 — X — X%
(¥, |REW,) = e ! ,

is well-defined for j,/ = 1,...,n.
(b) One dimension, derivatives of §-functions: Let

W, (p) = @m) "2 ™.
The general solution of (3.5) is

F(E)y= —ike =™k g (3.11)
(c) Two dimensions, §-functions: Consider
¥,(p)=Qm)~'e" (peR? x€R?).
We have now
1 ,
T(E)= —K(|x, —x, |©) —a; (#1)  (3.12)
27
r(E)= —Ink—a;. (3.12)
Here K|, is the modified Bessel function.
(d) Three dimensions, 5-functions: Let
WJ(P) — (277.) —3/2eiPXi (peR3’ xj€R3). (3 13)
Then
FyE)= —— e P (D), (319)
drr|x, —x |
1

(e) Three dimensions, lattice: Consider the restriction
of the function (277) ~ %~ to the set k + A. This restric-
tion belongs to #° _ , (k). We have

» e
pefia (p+ k)Y —EYP
which is absolutely convergent. The corresponding I'(E ) and

Hamiltonians will be studied in detail in another paper of
this series.

ip(x; — x;)

(¥, IREY|¥,) = (3.16)

D. Definition of ~%

Given W and I', we shall now define an operator H } in

#, by writing down an explicit formula for its resolvent.

Theorem: Let ¥ be an n-tuple of vectors in 5% _, satis-
fying condition (A) of Sec. 3A. Let I'(E') be any solution of
(3.5). Consider in 5, the family of operators Q ¥(E), de-
fined by

QFE)=R(E)—R(E)WT(E) (¥R(E),
(3.17)
where I'(E) ~ ' is the matrix inverse of I'(£ ) and

R (E) = (T — E)'istheresolvent of the kinetic energy op-
erator 7.
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Then Q £(E) is the resolvent family of a closed densely
defined operator H ¥.

QHME)=H{—-E)"". (3.18)

Before proving the theorem, we write out (3.17) with-
out shorthand notation. If ¢ is any vector in 57, if E is such
that detI'(E )40, then

QUE)=REW— 3 3 (W|REW)

Jj=1i=1

X(T(E) ") ;R(E)Y; . 3.19)

Proof of Theorem: For simplicity, we write Q (E') instead
of Q ¥(E), wherever there is no ambiguity.

(a) The operator (3.19) is bounded whenever Ee p(T")
and detl" (E )50, since R (E)¥e777.

(b) The family Q (E ) satisfies the first resolvent equation

!’ — 1 _— ¥
QE)QE)= T E [Q(E) - Q(ED)].
Indeed,

QEIQ(E)
=R(E)R(E")—R(E)R(E"W)T(E) ™ (¥|R(E")
— R(E)W)T(E) ¥|R(E)R(E) + R(E)|W)
XT(E) ™ (¥|R(E)R(EN¥)T(E") " '(¥|R(E").
The matrix in the fourth term is, by (3.7)
[(E") " (¥Y|R(E)RENNTE")"!
1 -1 _ ’ n—1
= 5_F NE) ™ '[IE)-TENTE
1

= =% &)~ —TE) "]

(3.20)

By using (2.11) in the first three terms, we obtain (3.17).
(c)Q (F)isinvertiblein ¥, i.e.,Q (E )¢ = Oand g7,
implies ¢ = 0. Indeed, Q (£ )¢ = 0 means

R(E) =R (E)W)I(E) '(¥|R(E)),

which means that R (E )¢ is in the linear span of the vectors
R(E)V; (j=1,..,n). Now R (E )¢, by Sec. 2. On the
other hand, no nontrivial linear combination of the R (E)¥
lies in 7%°,, by the assumption (A) that the ¥, are linearly
independent over 77, and the fact that R (E ) is a topological
isomorphism from #°; to #°,. It follows that R (E )¢ = 0.
Since R (E) is invertible in 57, we have ¢ = 0.
(d) we have

[Qr(E)]* = Qr (E),

where ", (E) = I Y(E). Proof by direct verification.

(e) The range of Q~(E ) (which is independent of E and
is, by definition, the domain of H ) is dense in 77,. Let ¢ be
orthogonal totherangeof Q- (E),i.e., (¢,Q (E )¢ ) = Oforall
¢eH#,. Then, by (d) Q. (E )¢ = 0, which, by (c) gives ¢ = 0.

We can now define H ¥ as

Hi=[QE)] '+E.

It is independent of E, closed (as the inverse of a bounded
invertible operator) and densely defined. Q.E.D.

(3.21)
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E. Remarks on the definition of ~

The above definition gives H [ only indirectly, by

(3.17). In particular, it does not allow us to write H [

= T+ V with some operator ¥ in 7#°,. We shall indeed see
that such a decomposition of H ¥ does not exist in any rea-
sonable sense, unless ¥ is only mildly singular (We#"_,).
However, for a spectral analysis of an operator it is much
more important to have an explicit expression for the resol-
vent than for the operator itself. We shall see that, in con-
crete cases, all spectral properties of H - can be obtained by
very simple computations.

F. General properties of /. : parametric representation

Proposition: The adjoint of H | is H {. where I", (E)
=TI'Y(E). [orsimply I',(E) = I' '(E ) if Eis real.] The oper-
ators H ¥ and (H })" do not commute in general. If I'(E ) is
Hermitian on the real axis, then H ¥ is self-adjoint.
Proposition: If Im(I” (E))>0 on the negative real axis
(i.e., if (1/20)[ (E) — I''(E)] is a positive definite matrix),
then H } is absorptive, in the sense that |le ~ ™ i ||<1for 0.
Proposition: Let A be any invertible n X n matrix; de-
note by A the complex conjugate and by A” the transpose of
A. Then
Hi=H%

Ara’™

(3.22)
In particular, if A is real and different from zero, then
Hf=H% . (3.23)

The above proposition are proved by direct verification.
Even though we cannot give an explicit form of H ¥, the

following “‘parametric representation” describes explicitly

the graph of H [, and is quite useful in applications.
Proposition: Let E, be any point in p(T"). The domain
Z(H }) consists exactly of vectors ¥ of the form

Y=¢ — R(E) | WT(E,) (¥|4), (3.29)
where g5, . For given ¥, there is only one g%, satis-
fying (3.24). If yeZ (H [) is given by (3.24), then the action
of H} on ¢ is described by

HE-EW=(T—E).

Proof: By definition, Z (H ¥) = Q- (E,)5,

= Qr(ENT — E)7¢;. Now Qr(E )T — E,)
=1— R (E,)|¥)I(E)  '(¥|, which proves (3.24). If

¥ =0, then ¢ = R (E,)|¥)I(E ~'(¥|¢ ). By assumption
(A), Sec. 3A, this is possible only if ¢ = 0. The assertion
(3.25) means ¢ = Q (E, (T — E,)¢, which is directly

verified.
Corollary: Define &° as the set

D=y |yei,, W|¥)=0, j=Ll..,n}.
Then
GOL2HHN, =2D°
(ii) The restriction of H | to Z° coincides with the re-
striction of T to 2°:
Hﬁ 0 == T
In other words, H ¥ is an extension of a restriction of T.
Proof: If Y€ (H ¥) belongs to 5, , then by (3.24)
¥ =¢, e Z°, and by (3.25), Hyp = Ty.

(3.25)

.y [
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Remark: 2° is not the orthogonal complement of a set
in 7, and so can be dense in 5.

Example: Let ¥,(p) = 2m) =™ (j=1,..,n; x,€R’,
pER?). Then 2° consists of functions ¢ (p) such that
J(p* + 1)*|4(p)|°d’°p < 0, and that fe ™ "¢ (p)d p =0
(/= 1,...,n). In terms of the Fourier transform (x-represen-
tation) this means that the wave function ¢ (x) vanishes atx,,
Xy

The parametric representation (3.24) (3.25) gives also a
convenient expression for expectation values of H ¥.

If ye 2 (H ¥), then

W|H — E)p) = (¢ |(T— Ey)p )
— (¢ [WT(E,) ™ (¥|4).
The normalization (#|¢) can be computed from (3.24).

G. HY. as limit of operators of the form 7+ V

Definition: Let We#"_, satisfy condition (A) of Sec.
3A.Foreachw>0,let @ e’ | (j = 1,...,n). Assume that
@ converges to ¥; in the topology of #°_, (so @, may
“converge out” of ##°_ ). That is, assume

Iml|@¢ — | _, =0 (j=1,.n). (3.26)

We shall say that a family M® of # X n matrices is a counter-
term for ®* if the family

<<D(u R (E )q,m) — M~

has a finite limit as w— oo, for all E€ p(T').
Remark: Tt is enough to require (3.27) to have a finite
limit for one E € p(T), since

(®°| R (E)D°) — (®“|R (E,)D")
=(E—E){(®"|R(E)R(E,)P")

has a finite limit as ©— oo

Example: The above remark shows that, for any E,
€ p(T), we could take M” = (®” | R (E,)®") as the counter-
term. We shall see, however, that in the interesting exam-
ples, it is preferable and possible to choose counterterms that
are diagonal matrices.

We can now describe H [ as a limit of operators of the
form T + V.

Recall the definition of norm resolvent convergence.
Let A and A, (n = 1,2...) be closed operators in 5%, with
nonempty resolvent sets. We say that 4, converges to 4 in
the norm resolvent sense, ifany Ee p(T, ) belongs toallp(T,)
for sufficiently large n, and if

(3.27)

lim (4, —E) '—(A4—E) '||=0

(sece.g., Ref. 18, IV, §2, 6, and Ref. 19, Sec. VIIIL. 7). Norm
resolvent convergence is the “stronger” of two concepts that
are used in perturbation theory of operators.

Theorem: Let We %], satisfy (A) of Sec. 3A. For any
@ >0, let ®°e#™ . Assume that

lim| @ — |, =0 (j=L..n).

Let M® be a counterterm for @, such that the matrices M”
are invertible if @ is sufficiently large. Define

T(E)= lim ((®°|R (E)®°) — M"). (3.28)
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Then
(i) I'(E ) satisfies (3.5), i.e., defines an operator H ¥, and
(ii) this operator is a limit
HY = lim (T = |®°)(M*)~ {(®*|)
in the sense of norm resolvent convergence.
Proof: The resolvent of T — |®“)(M*) ~ '(®*] is, by
(2.23), equal to

R(E) — R(E)|®°) [(®°|R (E)®”) —M"] ~ (®“|R(E).
The resolvent of H ¥ is, by (3.17),
R(E)—R(E)|¥)(E)"(¥|R(E).

Since limR (E )®“ = R (E)¥ (in #7,), and since I" (E ) is as-
sumed invertible, the convergence follows from
lim, . ({®°|R(E)®*) —M*)=TI(E).

Example: Let ¥,( p) = (2m) ~ %", with peR’, x,€R’,
J = 1,...,n. Define ®“ by a “cutoff’”:

where 0, ,(£)=1ifé <w,and B, (&) =0if £ > . Intro-
duce M* by

My =0 for j#I,
My = f |2y P dp—a,=Qr) 'o—aqa,,

where a; is real. Then M“ is a counterterm for W. Conse-
quently, the family

T— 3 199)A5@)®3],

J=1

with (1 H(w)) ~ ' = (27°) "' — a;, converges to H }.

4. SOME SPECTRAL PROPERTIES : LOCALITY :
INDEPENDENT CENTERS

A. Eigenvalues and bound states

Proposition: The points E that belong to the spectrum of
H } and do not belong to the spectrum of T are the solutions
of the equation

detI'(E) = 0. CHY)

The number of such points does not exceed # (the number of
centers, i.e., the number of components of ¥ = {¥, ... ¥, }).

Proof: The first statement is obvious by (3.17). Solutions
of (4.1) give poles of the resolvent, i.e., bound-states of H £.
The assertion on the number of such points can be obtained
either from the limits of Sec. 3G, or more directly, from the
fact that the matrix-valued function E—T(E ) increases
monotonically on the real axis whenever it is defined:

dT(E)

dE

since (W|R (E )*¥) is a positive matrix. Consequently the
eigenvalues of I'(E) are strictly increasing functions 4,(E)
(j = 1,...,n). There are at most » real points where one of the
functions A;(E ') has a zero. These are the eigenvalues of H ¥.

For the sake of simplicity, consider now the one-center
situation (n = 1). If E, is a zero of detI" (E ), then the projec-
tion on the corresponding eigenstate is

= (¥|R (E)¥) >0, 4.2)
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1
P.(E)= — %jSQ(E)dE
1
-1 RE)UNYRE)
WREyw) TEN]
“.3)

B. Resonances

In all the examples that we have considered and where
T has a continuous spectrum, the matrix-valued function
T'(E) can be analytically continued to a Riemann surface
over the E-plane. [By (3.5), it is easy to give general condi-
tions on ¢ ( p) which will insure this]. The zeros of this exten-
sion will be said to constitute the extended discrete spectrum
of H ¥. If a point in the extended discrete spectrum is not an
eigenvalue it is called a resonance. It is easy to see that this
definition is equivalent to looking at poles of the resolvent
between states which are localized in the x-representation
and so analytic in the p-representation.

In the example of the diatomic molecule we shall see
that most resonances show no inclination of becoming
bound states under natural changes of the Hamiltonian.

C. Infrared-divergence

Let now E be real again, and assume that 7" has continu-
ousspectrumin [0, o0 ). The fact that the eigenvalues A, (E ) of
I'(E) are monotonically increasing on the real axis allows an
immediate discussion of the possibility of “destroying” a
bound state by changing the arbitrary subtraction constant
ain I'(E'). We shall say that W is infrared divergent if
lim, , A(E)= + « (j = l,...,n). (In the case of one cen-
ter, infrared-divergence means [ (p)] ' |¥(p)|* = + oo,
with ¢ = (T + 1)~ '¥. This is a “small momentum”
divergence.)

If W is infrared divergent, then no bound state can dis-
appear into the threshold £ = 0 to become a resonance.

Example of infrared divergence

(1) Two dimensions, one center, ¥ ( p) = (27) ~ '™
( peR?, xeR?): We have seen that there

FE)= —lnk—a (k>= —E, Rek>0).  (4.4)

The condition Ink = — a, x, = ¢~ “ can be satisfied for any
real a, by a x in the physical half-plane. For regular, local
potentials in two dimensions this “indestructibility of bound
states” has been discussed by Simon.?

(2) One dimension, one center, ¥ ( p) = (27) ~ /%%~
(PR, xeR): Here the condition for — E = «? to be a bound
state energy is

FE)= L _a=o 4.5)
2K

i.e., k = 1/2a. As a tends to zero, , takes a trip to infinity
and returns as a resonance. This can also be seen from the
explicit form H. = T - |¥ Ya ~ '(¥|. (Remember that, in
this case, Y _|.)

We now consider the case where ¥ is not infrared
divergent.

Examples of infrared convergence

(1) Three dimensions, one center: Here (4.1) becomes
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- L/«'—cz:O. 4.6)

T
The bound state k, = — 47 becomes a resonance when a
goes through zero, starting with a negative value.
(2) Dipole in one dimension: ¥ ( p) = (27) ~ *pe”™
( peR, x€R): Here the condition (4.1) is
K, = —2a. 4.7
D. Locality; independent centers

A Hamiltonian of the form H = p> + ¥V (x) is local, in
the following sense. Consider (in x-representation) a func-
tion ¢ that belongs to the domain of A and that vanishesin a
ball Z. Then Hy also vanishes in &.

The Hamiltonian H ¥ with arbitrary ¥,e%° _, will not
be local in general. However, if %,(p) = (27) ~ %", then
the intuitive picture of H f is that of a particle feeling point
interactions, and we expect locality. In the proof given be-
low, it is important to remember the following:

If ¥, and ¥, are arbitrary elements of 7% _,, then the
matrix element (¥, |R (E)¥,) is not defined, since the inte-
gral {( p* — E)W,( p)¥,(p) dpis, in general, divergent. If,
however, we take ¥, ( p) = (27) ~ %" and ¥, (p)

= (2m) ~ %", with x, #x,, then (27) ~ *§&" ™ *(p?

— E)~ 'd"p converges (as limit of integrals over bounded
sets, not as an absolutely convergent integral if v = 2 or 3).
Consequently the “improper ;matrix element”

x, |R(E)|xz>=(2#)‘"fe‘”‘*=*"”(p2—fs)*‘d“p

= Gp(x, —x,), 4.8)
exists for x, £x,. We have

Gelx, —3) = —=Kole|x, =3, ]) (=), @9)

Gelx, —x,) = [47|x, — x,|]~ tg ™ Xlm —xl
(v=13). (4.10)

Theorem: Let H 7" be the operator H { with T'= p°,
with ¥,(p) = 2m) ~*%" (j = 1,...,n; peR’, x;€R",
v = 2,3), and I" any solution of (3.5). Then H "™ is local in
the following sense: if ¢ belongs to the domain of H 7 (in
x-representation) and if ¢ vanishes in a ball &, then H 7 "™¢
also vanishes in &.

Proof: We shall use the parametric representation intro-

duced in Sec. 3F. It now reads as follows: a function #(x)
belongs to the domain if and only if it is of the form

Y =) — 3 AfG,(x—x),

i=1

where ¢e£’ , (Fourier transforms of the space introduced in
Sec. 2), and where

(4.11)

Ap= S LE) Vst (xy). @.12)
Furthermore
HY " —EW=(—4—E)
=(T—E)¢ (4.13)

[by (3.24) and (3.25)].
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If ¢ is regular at the point x;, then necessarily 4, =0,
since ¢ (x) is regular and G (x — x;) is singular.

Now let & be a ball containing, say, the point x, and not
X,,...,%,, and such that the restriction of 1 to ¢ is equal to
zero. Then, first

Y =g (x) + 435G (x —x,) + - + 4G (x — x,),
for all x (since zero is reguiar). Secondly, in &, we have

px)= —A{G(x—x;) = —47G(x —x,).
By (4.13), then (H 7™ — E )¢ is zero in &, since G is the
elementary solution for — 4 — E,.

All Hamiltonians H 7" are local, but some are more

local than others. We shall say that H 7™ has independent
centers if the off-diagonal entries of the matrix I'(E ) are

Fj/(E) = (xj IR (E)|x1> =Gelx, —x;) (j#I)

From Sec. 3G, it follows that such H 7" are limits, in
the sense of norm resolvent convergence, of operators of the
form

T— 2 (D)L {(Pl,
j=1
where |® “)—|x;) in #° _,; there are no ““cross terms”.
We shall now illustrate this on the example of the “dia-
tomic molecule” in three dimensions.

E. Energy surface and resonance surfaces;
independent centers

The bound-state energies are solutions of det/” () =0
lying in the “physical half-plane” E < 0. The condition
detl" (E) = 0 can be written as

£ = —(a, +a2)i‘((a1 —a,)

27
1 — 2K |xy — xz] \1/2
* @ny |x, —x, | ) ’
which has to be solved for «. Even without solving (4.14), we
see that, if |x, — x, |- o, the solutions tend to x,
= —4na,,andx, = — 47a,. Theseare the “atomic”, i.e,,
the “one-center” values; the particle spends most of its time
at one of the centers.
For the sake of simplicity, let @, = a, = a. Introduce
the dimensionless quantities

(4.14)

y=4ma|x, —x, |, 4.15)
¢ =ix|x, —x, |- (4.16)
So ¢ is proportional to k = E %, and
é—Z
E=—% . (4.17)
X, —x |

The “physical half-plane” is Img > 0.

The extended discrete spectrum [or rather the set of {,
that correspond to the extended discrete spectrum by
(4.17)], is the set of zeros of the entire function (& + ¥)’

— e~ %7, In order to have a closer look at it, set § = £ + in
(£€R, %<R).

The points §, can lie either

(i) on the imaginary axis £ =0,
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(ii) on the curve

sing | 4.18)

¢

The curve (4.18) is symmetric with respect to the imagi-
nary axis, and lies in the half-plane 7 < 0. The lines
&= 4+ m, + 2, are asymptotes to (4.18). The branch in
the strip |£ | <7 goes through zero. The other branches go
through maxima at points & that satisfy & = tan§. For a giv-
en 7, the points &, are found as follows:

(iii) The points £, = in, on the imaginary axis are
found as the solutions of the equation

y+mp=+e " (4.19)

(iv) The points £, on the curve (4.18) are found as the
intersection of (4.18) with the curve

17 =~E£cotf —y. (4.20)

Let us first examine the strip |£ | < 7 of the §-plane. This
strip always contains three points of the extended discrete
spectrum. If ¥ < —1, all these points are on the imaginary
axis; two bound states (77 > 0) and one resonance above the
negative energy axis (7 <0). At y = —1, the bound states
collide with the resonance and they go into the first branch of
the curve (4.18). At ¥ = 1 the remaining bound state moves
to the negative imaginary axis.

Every strip nr < £ < (n + 1)z with n>1, contains exact-
ly one resonance.

All the resonances can be viewed intuitively as corre-
sponding to various modes of bouncing back and forth be-
fore escaping to infinity.

17:1(1

F. Correlated centers

As |x, — x, | = r—0, the bound-state solution ap-
proaches x(r)~1/r, giving E (r)~ — 1/7*. This means that
the point interaction, independent center model is not suit-
able for the discussion of the limit where the two centers
merge, as could have been predicted on general grounds.

It is easy to obtain models with “physical” behaviour at
r—0, without impairing explicit solubility or locality.

Proposition: Let p(r) be a smooth real-valued function
on [0, ), such that p(0) = 1. Write (dp/dr), _, = 4mB. For
any x, €R?, x,€R’, consider the Hamiltonian H ¥, where
¥,(p) = (2m) ~ %", and where I is given by (3.11).
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Choose the subtraction matrix a{x,, X, ) to be

'_‘P(") a,

with r = |x, — x, |. Let x(r) be a bound state solution of
detI’(£) = 0. Then

lim( _ k(r) ): aa, - fB* .

47 a, +a, -2

Remark: p(r) can be chosen so as to vanish (exactly or
asymptotically) for r greater than some r, > 0; so the correla-

tion between centers can be made to disappear when the
centers are apart from each other.
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Para-Bose commutation relations are related to the SL(2,R ) Lie algebra. The irreducible
representation &, of the para-Bose system is obtained as the direct sum D, & Dy, ., ofthe
representations of the SL(2,R ) Lie algebra. The position and momentum eigenstates are then
obtained in this representation & ,, using the matrix mechanical method. The orthogonality,
completeness, and the overlap of these eigenstates are derived. The momentum eigenstates are
also derived using the wave mechanical method by specifying the domain of the definition of the
momentum operator in addition to giving it a formal differential expression. By a careful
consideration in this manner we find that the two apparently different solutions obtained by
Ohnuki and Kamefuchi in this context are actually unitarily equivalent.

1. INTRODUCTION

The kinematical basis of nonrelativistic quantum me-
chanics is supplied by the Heisenberg commutation rela-
tions. Using these relations, one can work out the equations
of motion for different dynamical systems described by dif-
ferent Hamiltonians. Almost three decades ago, Wigner
posed the interesting question:“Do the equations of motion
determine the commutation relations of quantum mechan-
ics?” One would expect the answer to depend on the particu-
lar system considered. The simplest system one can examine
in this context is the harmonic oscillator. Wigner' found in
this case that there is a one parameter continuous family of
inequivalent operator representations for position and mo-
mentum, each of which leads to the standard oscillator equa-
tions of motion. This parameter, hereafter denoted by «, is
the minimum eigenvalue of the Hamiltonian and is restrict-
ed to be real and strictly positive.

In 1953, Green introduced” a new method of quantiza-
tion of free fields leading to the concept of parastatistics for
identical particles. Here one specifies the commutation rela-
tions of bilinear expressions in the free field creation and
annihilation operators with the creation or annihilation op-
erator. These commutators are to have the same values as in
the normal case. Depending on whether the bilinear expres-
sions are basically symmetric or antisymmetric in creation
and annihilation operators, one speaks of para-Bose or para-
Fermi systems. The para-Bose problem of one degree of free-
dom is identical with the oscillator problem of the preceding
paragraph and can moreover be elegantly formulated in the
language of the group SL(2, R).

Many interesting mathematical properties connected
with the Heisenberg commutation relation are known.
Among them we may recall the following: there is the matrix
mechanical representation of Heisenberg and the wave me-
chanical one of Schrodinger?; there is the unitary operation
of Fourier transformation that interchanges the operators of
position and momentum?; there is the overcomplete family
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of coherent states—the eigenstates of the annihilation opera-
tor,* connected on the one hand with attaining a minimum
value for the product of uncertainties in position and mo-
mentum and on the other hand with the Bargmann realiza-
tion of the commutation relation in a Hilbert space of analyt-
ic functions’; there is the Weyl representation of operators,
similar in form to the Fourier integral representation for
classical functions of two variables; there is a variety of close-
ly related forms of operator description suggested by various
rules of ordering noncommuting operators, prominent
among these being the normal ordered and the antinormal
ordered forms®; and there is the diagonal coherent state re-
presentation of operators.”® The existence of this wealth and
variety of results is due largely to the relative simplicity of
the Heisenberg commutation relation, and one must be pre-
pared to find that those results capable of generalization to
the para-Bose case show an increase in complexity.

The purpose of this investigation is to provide a study of
the representations of the para-Bse oscillator from many
points of view suggested by the catalog of known results for
the usual case mentioned above. The construction of the ma-
trix representations of the para-Bose system with the Hamil-
tonian diagonal is a fairly elementary algebraic exercise.”"'
The question of a Schradinger description was examined by
Yang'? in 1951. More recently a thorough analysis of this
guestion has been made by Ohnuki and Kamefuchi.”> While
setting right some of the incorrect conclusions drawn by
Yang, certain of the results of Ohnuki and Kamefuchi strike
one as quite surprising and unexpected. Thus, these authors
find it necessary to invoke the theory of generalized func-
tions and even the notion of a superselection rule in order to
interpret their results connected with the wave function de-
scriptions of the momentum and energy operators. One of
our tasks will be to clarify this situation completely and show
that there is no real need to bring in these ideas—the math-
ematics can be understood at a much more elementary level.

The results of this investigation have for convenience
been divided into two parts. The contents of the present pa-
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per (Part I) are as follows: We start in Sec. 2 with a statement
of the para-Bose commutation relations and then show how
these may be reinterpreted in terms of the groupSL(2, R ). A
relevant class of Hermitian representations of the SL(2, R)
Lie algebra is described and these are then used to.obtain the
matrix representations of the para-Bose system. This reca-
pitulation of known material allows us to introduce basic
definitions and notations to be used in the rest of this work.
In Sec. 3 the question of representing the para-Bose algebra
in a basis where the position operator, rather than the ener-
gy, is diagonal is taken up. It turns out that there are two
rather natural Schrodinger descriptions of this type and we
will follow the route of obtaining them directly from the
matrix description. This method allows for a clear and care-
ful discussion of some delicate phase ambiguity questions.
The eigenfuctions of momentum and energy, and their nor-
malization and completeness properties, will be obtained. In
Sec. 4 we discuss the two Schrodinger descriptions of the
momentum operator, and give a detailed comparison with
the work of Ohnuki and Kamefuchi. It will be shown that
the key to the proper understanding of the para-Bose mo-
mentum operator is the specification of its domain of defini-
tion in addition to giving a formal differential operator ex-
pression to it. Two appendices contain proofs of some of the
statements made in Secs. 3 and 4.

In Part II of this investigation we consider the question
of para-Bose coherent states and related matters.

2. PARA-BOSE COMMUTATION RELATIONS, AND THE
GROUP SL(2, R)

The para-Bose oscillator for one degree of freedom is
described by an irreducible pair of operators'* 4, &' (adjoints
of one another) obeying the commutation relations

[1@d" + d'd), 4] = — 4, (2.1a)
or equivalently

[Waa* + a'a),a"] =a". (2.1b)
The bilinear expression here defines the oscillator
Hamiltonian:

H=\aa" + d'o). (2.2)

Rearrangement of the terms in Eq. (2.1) allows us to derive
therefrom the results

[4% 4] =24, —24" 2.3)
As a matter of fact, from any one of the four relations (2.1)
and (2.3) the other three can be derived.

If instead of the annihilation and creation operators we
use position and momentum operators'’ § and p via

d = 2"V%§ + ip), (2.4a)

at = 272G — ip), (2.4b)
then the expressions for H and the para-Bose relations
become

/\"‘l A]

— 1@+ 5, @2.5)
[4° A = 244, (2.6a)
[# 41 = —2p. (2.6b)

If we define three Hermitian operators fo, J 1 J, by

2387 J. Math. Phys., Vol. 21, No. 9, September 1980

Jo=1H, J, = Y@ + &™), J, = i@ — &%), @7
then using Eq. (2.1) one can show that they obey the commu-
tation relations corresponding to the SL(2, R) Lie algebra'®

o, i) = ilo, o, L) = =i, Wy, ) = — il 28)
The para-Bose relations themselves take the following form:

[Jo; d'l= %a s [Jos a] §a,
[/, + i, d' =0, [J +ih,dl = —d,
W, —ih,dl=d, [J,—iL,dl= 2.9)

Thus, under the unitary representation of (the covering
group of) SL(2, R) provided by the J's as generators, the
doublet of operators d*, 4 behaves as a tensor operator be-
longing to the nonunitary two dimensional spinor represen-
tation of SL(2, R). The operator d' (d) is the + } ( — 1) com-
ponent. Thus, the search for the irreducible representations
of the para-Bose system may be viewed as follows: it is a
search for Hermitian (reducible) representations of the
SL(2, R) Lie algebra which can support a two component
spinor operator and in which moreover the SL(2, R) gener-
ators are symmetric bilinears in the components of the
spinor operator, corresponding to two spin } entities being
coupled to spin 1. Recalling that locally the group SL(2, R) is
the same as the three dimensional Lorentz group'® SO(2, 1),
this situation reminds one of the class of relativistic wave
equations discovered by Bhabha,'” wherein the six gener-
ators of homogeneous Lorentz transformations in four di-
mensional space-time are required to be the commutators
among the components of the four-vector operator in the
wave equation.

The Hermitian representations (irreducible) of the
SL(2, R) Lie algebra (2.8) relevant for our analysis may be
labeled by a real positive parameter 3, 0 <8 < co. We write
D,g for these representations; their essential feature is that J;
is positive definite in them, and in fact £ is the lowest eigen-
value of Jo in Dg. The eigenvalues of Jo are integrally spaced
and the corresponding eigenvectors form a complete, orth-
onormal basis for the space of the representation:

JolmB) = (n +B)|m B), 2.10)

(n';B|n B)=34,, @11
Itis convenient to require the phases of these vectors to be so
chosen that the nonvanishing matrix elements of the raising
and lowering operators

Jo=h +il (2.12)
are all real positive. The description of D, is then completed
by adjoining to Eq. (2.10) the equations

Jin By =[(n+ D(n +28)]"2|n + 1, 8),
Jin;B) =In(n +28—D]"*|n -1, B).

(2.13a)
(2.13b)

The only remaining phase ambiguity is the freedom to
change the phases of all the basis vectors by one common
factor. For 8 =1, 1, 3, 2, ..., we obtain single-valued unitary
SL(2, R ) representations on exponentiating the generators;
otherwise we obtain representations of the covering group of
SL(Z,R).

The irreducible representations of the para-Bose alge-
bra will be written &, indexed by the minimum eigenvalue
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of Hin the representation. The eigenvalues of H are integral-
ly spaced and the corresponding eigenvectors form a com-
plete orthonormal set:

H ln; a) = (n + @)|n; ), (2.14)
(n';aln;a)=6,,. (2.15)

The appearance of a(f) in a ket or bra vector will indicate
that it belongs to the space of a para-Bose [SL(2, R )] repre-
sentation. The space of the representation & , is obtained as
the direct sum of two spaces carrying the SL(2, R ) represen-
tations Dy and D | (,,,, for B = Ja. We may loosely indicate
this as

‘@a =Llp eDB+1/29

B=la. (2.16)
The eignevectors of H are obtained by adjoining the eigen-
vectors of J, in D, with thosein Dy, ,:

12La) = |5 B),

2 +La)y=|8+4),1=0,1,2,.... @.17
We have of course the condition
(n';B+1Im B) =0. @2.18)

Then, with phases chosen so that all nonzero matrix ele-
ments of d and 4" are real positive, the para-Bose representa-
tion &, is fully determined by the relations

4|A; B) = Cn)*n — 1; B+ 1), (2.192)
8|A, B +1) = (2n +48)|n; B), (2.19b)
@i, B) = (2n +48)'*|n; B+1), (2.19¢)
dMn,B+1)=Qn+2)"n+1,8). (2.19d)

These relations can be easily rewritten in terms of |n; a). The
matrix elements then have different analytic forms for odd
and even n (cf. Ref. 11):

d|2n; @) = (2n)"*|2n - 1; a), (2.20a)
é2n + 1; @) = (2n +2a)"*|2n; a), (2.20b)
é'2n; @) = 2n 4+ 2a)'*2n + 1; a ), (2.20c)
&'2n+La) =@2n+2)22n +2a). (2.20d)

Since 6" and 4 alter the eigenvalues of H by + 1, there
are two, and just two, choices for a unitary operator R which
will reverse the sign of @' and 4, and whose square is unity:

RiR= —4,Reé'R= -6, R*=R'R=1. (@21
We may either take Rtobe R , defined by

Ryl @) =(=1)"|n; ) (2.22)
or we may take it to be R, the negative of R,:

Ryln;a) = (=1D)"+'|n; ). 2.23)

If R is interpreted as the parity, then the first choice corre-
sponds to H having an even parity ground state and the sec-
ond to an odd parity ground state. The commutator between
4and 4" can now be calculated in 9 , . Theresultis an opera-
tor expressible in terms of R, or R,:

4,61 =1+ (2a —1R,

=1+ (1 —2a)R,. (229
Stated in terms of § and p this reads
[, 8] =i+ i2a — DR,
=i+ i1 —2a)R,. (2.25)
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For a = J, the right hand sides of these commutators reduce
to ¢ numbers, and the para-Bose representation &, ,, be-
comes the normal Bose representation.

3. POSITION AND MOMENTUM EIGENSTATES—
MATRIX MECHANICAL SOLUTION

In the previous section, we discussed the para-Bose re-
presentation &, in a basis made up of the discrete sequence
of eignevectors of H. It is important to stress that once we
make the convention that all nonzero matrix elements of 4
and 4" are real and positive, the only freedom left in the
choice of these eigenvectors is to alter the phase of all of them
by a single common factor. Now we show how we may give
Schrodinger descriptions of &, with § diagonal.

One expects that § (as well as §) has a continuous spec-
trum running from — « to + oo. This will indeed be so. We
use letters x, x’, ... to denote eigenvalues of § and letters k, k'
to denote those of 5. We expand an eigenvector of § as

|x; @) = i C,(x; @)|n; ), 3.1

and attempt to find the expansion coefficients by equating
terms in the eigenvalue equation
glx; @) = 271%(@ 4 aM|x; a)

= x|x; a). (3.2)

Using Eq. (2.20), we obtain the system of recursion relations

a'’?C\(x; a) = xCy(x; @), (3.3a)
(n + @) ’Cy, ,y (x; @) + n'2C,y,, (x5 @)

=xC(5a), n=1,2,., (3.3b)
(n+1DC,, (@) + (n + @) ?C (% @)

=xC), . (;a), n=0,12,... (3.3¢)

It is immediately evident that each C, is unambiguously
determined as some definite multiple of C,,. They turn out to
be expressible in terms of associated Laguerre polynomials:

Cy(x; @) = Colx; a)(— 1’
X [ (@)/T (I + a)]' 2L ¢~ 1(x?).
Cori1 (55 @) = Colx, al( — 1)’
XM (@)/T (I + 14 a)]'’xL (x?).
34
The following two relations among these polynomials [Ref.
18 p. 1037, formulas (8.971.5) and (8.971.4)] compared, re-
spectively, with Egs. (3.3b) and (3.3¢) lead to the solution
(3.4):
L"'@=L3@~L5; @,
L@ =@r+a); '@~ n+DLiL@.
At this stage, therefore, the eigenvectors of § appear as
[x; @) = Colox; ) (@]

x S (=n'uvra+an

=0

XAL ()2 @)

Tl T4 )},

(3.5)

+ (3.6)

with Cy(x; @) yet to be chosen.
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It is possible to evaluate the inner product of these ei-
genvectors of § with one another. The details are given in
Appendix A. One finds that

(x'; alx; @) = |Colx; )T (@)e”|x|' ~298(x' = x).  (3.7)

We choose C, so that the coefficient of the delta function
becomes unity. This still leaves the eigenvectors of § arbi-
trary up to an x-dependent phase; denoting this phase by
£ (x), we have the most general solution for delta-function
normalized eigenvectors of § as

|x;a) = expli€ (x)]exp( — x?)|x|*

X S (=)' +a)]”
{=0 O

¥, (x;2) = exp( — x?)|x]*~ (1/2){

, 1,2,..,

so that
|x; @) = expli€ (x)] 20 ¥, (x; @)|n; ).

By definition, ¢, (x;a) is an even (odd) function of x for n
even (odd). We can exploit the known orthogonality proper-
ties of associated Languerre polynomials [Ref. 18, p. 844,
formula (7.414.3)] to obtain

| nwaovwadx=s,, (112
while the last line of Eq. (3.8) could be written as

S ¥ s @) =86’ — x). (3.11b)

n=0

Next the eigenvectors |k; a) of j can be easily obtained by
using the unitary connection'® between § and p:

ﬁzexp(ii;-ﬁ)q” exp(—i%]?). (3.12)

Allowing for an arbitrary phase factor 7(k ), the most general
delta function normalized eigenvectors of 5 have the form

|k; @) = explin(k)]exp( — L k2)|k|*—1?
x S W/ri+a)”
i=0
X{L ¢ (kY| 2a)

k
+ L 2+ L a))

(k' alk;a) =8k’ — k). 3.13)

Using expansions (3.8) and (3.13) for the eigenvectors of §
and p, we may evaluate their overlap. As shown in Appendix
A we find that

(x; alk; a) = explin(k ) — i£ (x)]§|xk |2

X a1 (IXK ) + ieCek W (Ixk )], (3.14)

Here J, is the usual Bessel function and (x) is the sign of x.
We may rewrite Eq. (3.14) in the form
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(=)' {[I/rd+a)]"’L§ (), n=2],
(—D'UYTU+1+a) )L, n=2+1,

(3.10)

x{L77'6D)2 )

P S 7(x2)|zl+1;a>],

3.
(l+a)l/2 ( 8)

(x'; alx; a) =8 (x' — x).

(A possible dependence of £ on « is, for simplicity, not ex-
plicitly indicated.)

Before considering ways of resolving the remaining
phase ambiguity, we use the results so far obtained to define
a special sequence of functions of x and to set up eigenvectors
for p. We define, on the basis of Eq. (3.8),

3.9)
(x; alk; a)
= Y|xk |*~2exp{ink ) — it (x)}F ,(ixk),  (3.15)
where F , is an entire analytic function
F@=2"l,_ @ +1,0)] (3.16)

and I, is the modified Bessel Function. Equation (3.15)
readily follows from Eq. (3.14) on making use of the relation
I, (ixk) = i°J ,(xk ) and observing that x — “J,, (x) is an even
function of x. We shall find in Paper II that & (2) also
appears while considering the normalization of the para-
Bose coherent states.

On account of the delta-function normalization of the
state |x; @) we may therefore write

|k; a) =ei1,(k)f e—i;(x)lxkla—l/Z

— o

X %?a(ixk)lx; a)dx, (3.17a)
and equivalently
Ix; a) =e"'§("’J'°° e MO|xk |* 172
x %5“,,( — ixk )| k; a)dk. (3.17b)

The position and momentum representations of any state
l@), viz.,

lp) = ftp(x; a)|x; a)dx
= [ ot @)k arak,
are then related by
d(x;a)=e" ‘g(x)fw |xk |@—172
X —;— F L (ixk e ™D (k; a)dk,  (3.18a)
b (k; a) = e""’(")fw |xk |= =172

— oo

X % F o (— ixk )t D¢ (x; a)dx, (3.18b)
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We now consider natural choices for the hitherto artib-
tary phase factor . If we demand that under the action of ﬁl
the eigenvector of § with eigenvalue x is changed into the one
with eigenvalue — x, it is easy to see that we may set £ = 0.
With this phase convention, we shall write |x; ; 1) for the
eigenvectors of §; we shall say that this leads to the first
Schrédinger description of & . In this description the Hil-
bert space carrying the representation & , appears as the
space of all (Lebesgue) square integrable functions of x in the
range — oo t0 oo, with§ being the operator of multiplication

by x, and R, being the parity operator reversing the sign of
1

(x; a; n; @) =¢(x; @) = ¢, (x; @)

—e~ (1/2)x’|x|a - 1/2{

Here, we have set 7 = 0. Recalling the condition 0 < < oo,
we see that the above wave functions are exactly what Oh-
nuki and Kamefuchi have called case (i). In this case, their
parameterc =a — > — L

Instead of the above convention, we can consider the
alternative one wherein the operator R, plays the role of
parity. We demand that £ be so chosen that an equation like
(3.19) be obeyed with R2 in place of R Such a choice for £
exists, but it is not a continuous function of x: we must set
& (x) =0for x>0and & (x) = 7 for x < 0. With this choice,
we shall write |x; a; 2) for the right hand side of Eq. (3.8),
which then obeys

Ry|x; a;2) = | — x; a;2). (3.21)

This leads to what we shall call the second Schridinger de-
scription of &, . Asin the first Schrédinger description, here
again the Hilbert space of the representation &, consists of
all (Lebesgue) square integrable functions of x in the range

— o to o0, because of Eq. (3.10) and (3.11). Moreover, §
again is a multiplication by x. The difference lies in the fact
that is is now R,, not R 1» whose effect on a general wave
function is given as reversing the sign of the argument. To
emphasize this difference between these two Schrodinger de-
scriptions, it may help to put the matter as follows: Suppose
we take a vector |@) lying in the space of the representation
2 ., and describe in the basis of eigenvectors of H by the

sequence {¢,, }:
lp) = Ei: ¢, |n;a), 2|, > < .

When we pass to the first Schrodinger description of &, we
assign to |@) an L, function ¢ ‘"’ (x) by the correspondence

P =(xia; o) = 3 .4 ).

(3.22)

(3.23)
1

=¢(x, @) = QY (x; @)

{x; a;2|n, a)

ef(l/Z)x2|x|a —1/2[

The freedom in the choice of 7 has not been used in Eq.
(3.29a); it has in fact been set equal to zero there. If instead
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(=D'I/CU+))LT (XD,
(=D [IV/CT +1 4 a)]*%L %(x?),

(=D IYCI+ )] e(x)L ¢ ' (x%), n=2],
(=D UYCA+1+a) ] |x|L F(x?),

the argument x of a general wave function [cf. Egs. (3.10)
and (3.11)]. Thus, |x; a; 1) is given by the right hand side of
Eq. (3.8) with £ =0, and

ﬁ,]x;a;l):|—x;a;l). (3.19)

Moreover, in this description the wave functions corre-
sponding to eigenvectors of p and of H take the forms [cf.
Egs. (3.14) and (3.10)]

(x; a; 1|k; a)=¢{"(x; @)
= L|xk |"2{J, _ (|xk |) + ie(xk W, (|xk |);
(3.202)
n=2, 3.20b
n=2+1, 1=0,1,2,.. . (3-200)

I
Then the actions of R, and R, on these wave functions are

Ry @) x) =9 (= x), Bop) () = — @ (= x).
(3.24)

On the other hand, in the second Schrodinger description of
D ,, we assign to |@) determined by the same /, sequence
{1, } a new L, function ¢ ‘*’(x):

P PW=(x52lp)= 3 6.4P5a). (325
n=0

The ¥ is defined below [Eq. (3. 29)]. In place of Eq. (3.24)

we now have

Rp)?X) =@ P (—x) R@)P(x) = —@(—x), (3.26)
and moreover for a fixed {g, },

P P(x) = ex) @ V(x). (3.27)
As {@, } varies over all /, sequences, the set of all ¢ ‘’(x) we
get coincides with the set of all ¢ ‘>’(x), and this is the L, space
over the real line. Thus, the difference between the two
Schrodinger descriptions is merely the difference between
two equally valid unitary correspondences to go from /, to
L,( — 0, «). The two Schrodinger descriptions are unitari-
ly related via the transformation

P(x)—€e(x)(x). (3.28)
As replacement for Egs. (3.20), we have the following wave
functions for eigenvectors of § and H in the second Schro-
dinger description:

(x; a; 2|k; )
=¢yP(x; ) = W (x; @)

= ie(k )y |xk | 2T, (|xk |) — ie(xk W, _, (|xk D};
(3.292)

(3.29b)

n=2+1, 1=012,..

]
we use this freedom to remove the factor ie(k ), we then see
that the above momentum and energy eigenfuctions are ex-
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actly what Ohnuki and Kamefuchi have called case (i), their
prarameter ¢ being now given by ¢ =} — a and so obeying
c<i

For the sake of completeness it is shown in Appendix A
that the momentum eigenfunctions are properly
orthonormalized:

r dx Y00 @y P00 @) = 8k’ — k).

The same equation holds with 2 in place of 1 as superscript.
Since these wave functions depend only on the product xk,
orthonormality and completeness mean the same thing.

It is worth observing at this stage that if we seta = |, we
obtain the well known results of the normal oscillator. Thus,
for instance, Eq. (3.9) for @ = § reduces to

¥, () = (@22 "V H, (x)e />, (3.31)
whereas Eq. (3.15) gives (ignoring the phases £ and 7)
(x; 4|k; 1) = (2m)explixk), (3.32)

H, (x) being the Hermite polynomial. Equations (3.31) and
(3.32) give the well known energy and momentum eigen-
functions. Equations (3.18) reduce to ordinary Fourier
transform relationships.

(3.30)

4. WAVE MECHANICAL SOLUTION FOR MOMENTUM
EIGENFUNCTIONS

The Schridinger descriptions of &, and the eigenfunc-
tions of p and H have so far been obtained by working direct-
ly with the matrix representation of & , . In particular these
eigenfunctions have not been obtained by solving (coupled)
differential equations arrived at by first obtaining a formal
solution of the §, § commutation relation (2.25). We now
address ourselves to the question whether in each of the
Schrodinger descriptions of &, the action of  on a general
wave function could be given by a formal differential
operator.

We begin with the first Schrédinger description in
which the momentum eigenfunctions in the representation
&, are given by Eq. (3.20a). Proceeding purely formally,
Eq. (2.25) in terms of R, suggests that the action of  on a
general wave function ¥(x) might be given by

GHE) =(_,-di+,- “—‘iﬁx)np(x)
di//(x) % o —

“.1)

Herel6 is an operator that changes the sign of the argument
of the function standing to its right, and we remember that in
the first Schrodinger description R is realized as P Now it
is a fact that the momentum eigenfunctions ¢{’(x; a) are
indeed formally the eigenfunctions of the operator appearing
in Eq. (4.1.); thus, the following holds:

dy(x; a) 1 &
dx
= k{(x; a). 4.2)

[This is shown in Appendix B; incidentally, it is not neces-
sary for us to discuss whether Eq. (4.2) is actually obeyed at

—1
2 Y (—x; )
X
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x = 0; its validity for x#0 is all we need]. We can write Eq.
(4.2) as

. d La— 4
—i— o llka)+i—=2(—x,a; 1k a)
dx X

={x;a; 1|plk; @). 4.3)

Since the set of eigenvectors |k; @) of in & , is complete, we
can “peel off”’ the ket |k; @) in Eq. (4.3) and put inits place a
general ket |/) having a Schrédinger wave function #(x); we
then see that the action of § is indeed as expressed by Eq.
(4.1) in the first Schrodinger description.

However, the formal statement

— 1 A
5= _idi+i Cind § (4.4)

x X
does not suffice to completely characterize the action of § in
the first Schrodinger description of & ,. As with any formal
operator expression intended to determine some unbounded
operator, one must specify the domain of definition of the
operator. It is the formal expression together with its domain
that combine to determine a definite operator; indeed it can
happen (as we will see) that an operator expression can be
taken with several distinct domains and then each choice of
domain goes to determine one definite operator. In our case,
we must find all possible choices of domian for the formal
operator (4.4) such that (i) the domain is dense in the Hilbert
space and (ii) the above operator is Hermitian (symmetric)
on this domain. Furthermore, the domain must not be un-
necessarily small for otherwise one could lose the self-ad-
Jjointness property for the operator one is trying to define.
After all this, one must pick just the right domain so that one
is then describing the momentum operator “really belonging
to Z,. We now see how to do all this.

Let i/(x) be a general square integrable function defined
over therange — oo to oo . Knowledge of #(x) for all real x is
completely equivalent to the knowledge of

¥, 0= £ A -0}
For all real positive x, and moreover
|7 asuor =2 axlv, @F+p_ P @6

In particular, it is not necessary to define negative argument.
Now the action of the formal operator (4.4) on ¢ __ is clearly
as follows:

@Y) . x) =
Gy _x)=

@.5)

x(l/2)la d ( a—l/Z'//_ (X)),

dx
a7]/2 d (.x(l/2)—a¢+ (X)), x>0'
dx
“.7n

Thus, the first condition for ¢ to be in the domain of g, viz.,
that along with ¢, p¢ also be an L, function, leads to the
following requirements: (i) ¥ should be everywhere differen-
tiable and its first derivative should be square integrable at
infinity; (ii) the behaviors of ¥ , near x = 0 must be such as
to ensure

J-dx xt =2 i(x
o

a-1/2¢‘ (x)) 2

< 0,
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We shall hereafter assume the necessary natural conditions
at infinity are obeyed. Near x = 0, the requirements (4.8)
restrict . and ¢_ to such behaviors:

(;Lx o=y Y| <o (4.8)

¥, (x) = constant - x* ~'/* + powers of x >},
¥ _ (x) =constant - x"/? ~“ + powersof x>}. (4.9)

For 0 <a < 1, such behaviors do not conflict with v, itself
being L,; for a1 the constant accompanying x(/? ~“ in
¥ _ must clearly be zero.

Let us now take two L, functions ¢ (x) and ¢(x), each
behaving near x = 0 as described by Eq. (4.9):

¢+ ~axa~l/2 + bx’l, lﬁ_ ~cx(1/2)—a + d x/l’
¢, ~a'x* 2+ b'x, @_ ~cXxVP 4 dix,
4.10)
The A 's need not all be the same, but symbolically denote
terms where the exponent of x is greater than 1. Also, if a> 1
we understand ¢ = ¢’ = 0. We now ask under what condi-
tions we can have the equality

(¢, 5Y) = B, ).
Assuming a nice behavior at infinity we have

@, 5Y) — (Bp.¥)
=2f: dx[p* G), +¢* By)_
— @) v, —Gp) v_]
_21-[:0 dx::;_ [x(l/z)—a¢*+xafl/2¢_

+ xa—1/2¢7 sl: x(1/2)~a¢+ ]
=2i[(@ +b'x* T VD -y +d xP 712
+ (e Hd XY@ o bt D)
{ a*c+c*a, if0<axl,
=2i .
0, ifa>l.

From here we draw the following conclusions: If &> 1, there
is only one way in which to choose a domain for the formal
operator (4.4), so that a unique self-adjoint operator may be
defined; the domain must consist of all L, functions ¥(x)
which are once differentiable, the derivative of 3 must be
square integrable at infinity, and near x =0, ¥ _ must be-
have as

U, ~ax 2 4 bxt g ~d AL @13)

Fora > 1thefirstterminy . here need not be distinguished
from the “1 ” terms). If 0 < @ < 1, then for each choice of a
real parameter s we have a possible domain M in the Hilbert
space that can be chosen as the domain of definition for the
formal operator (4.4), and that will then lead to a definite
self-adjoint unbounded operator. A change in s entails a
change in this last operator. Apart from conditions at infin-
ity and of differentiability, the elements of M, are character-
ized by the fact that, near x = 0,

¥, ~ax® V2 4 bxt Y ~isaxP 2+ d xh (4.14)
Ifboth ¢ and 1 belong to M_, the right hand side of Eq. (4.12)

vanishes and Eq. (4.11) is secured.
We are now in a position to give the complete specifica-

(@.11)

(4.12)
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tion of the operator p of the para-Bose algebra when we
choose the first Schrodinger description of & . The situa-
tion for @>1 is very simple: § acts as stated in Egs. (4.1) and
(4.7) and has as domain all wave functions which, apart from
differentiability and suitable behavior at infinity, look like
Eq. (4.13) near x = 0. It is easily seen that the energy eigen-
functions and momentum eigenfunctions given in Eq. (3.20)
indeed conform to Eq. (4.13) when a> 1.

On the other hand, for 0 < a < 1, we shall use the fact
that the energy eignfunctions (3.20b) lie in the domain of the
para-Bose momentum operator § and thereby determine the
proper domain M needed to specify this operator in the first
Schrodinger description. The eigenfunctions (3.20b) look
near x = 0 like

N N
'psll,)+ = O’ ¢£11)— ~xa+l/2, n= 21 + 1) l= 0’ 1’ 2’ .

(4.15)

These functions belong to M, for s = 0. Thus, the complete
specification of the para-Bose momentum operator 5 in the
first Schrddinger description of &, 0 < < 1, runs as fol-
lows: It acts in the manner given in Eqgs. (4.1) and (4.7) and
its domain consists of all wave functions which, apart from
differentiability and proper behavior at infinity, behave near
x =0as

Y, ~ax®" V24 bx, Y ~d X, A>) (4.16)

One checks that the momentum eigenfunctions (3.20a) do
obey Eq. (4.16).

In all the above arguments we have omitted logarithmic
factors and assumed that the exponents A are real. Actually
all we need is Red >} everywhere.

In a strictly similar manner one can show that in the
second Schrédinger description of &, the formal action of
the para-Bose momentum operator p is given by

(= —id i i;—“ﬁ,)a/z(x)
= i hma iy,

dx x
(P, X)= —ix*—2 7:— (P~ (x)),
x

(B _ ()= — x> % (==Y, @), (4.17)

Corresponding to the fact that 132 is now realized as ﬁx ,and
its definition is completed by stating that its domain consists
of all ¢ which apart from differentiability and good behavior
at infinity behave near x = 0 like

v, ~bx' Y ~ex®TV2 4d XA, (4.18)

This is the proper definition of the domain for all a. Notice
that in the first Schrodinger description too, finally the do-

main of definition of p turned out to be the same in form for
alla,i.e.,Eq.(4.13)fora>1and Eq. (4.16)for0 <a < 1. One
checks that the wave functions (3.29) indeed obey Eq. (4.18).

This analysis shows that the effort to arrive at the

Schrodinger (or wave-mechanical) descriptions of the para-
Bose oscillator by first formally solving the §-5 commutation
relations (2.25) via Egs. (4.1) and (4.17) and then setting up
(coupled) differential equations for momentum and energy
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eigenfunctions can yield misleading results. Indeed, Ohnuki
and Kamefuchi formally solve the commutation relation
(2.25) by

R . . ¢ 3

P "dx + x Per
where ¢ is a real constant, and state explicitly that the theory
allows ¢ to be any real number. Their paper does not make it
clear that the range — } < ¢ < co is unitarily equivalent to the
range — oo <c¢ <}. Itis difficult to demonstrate this equiv-
alence directly working with the formal expression (4.19)
and no domains specified. Furthermore, while for c< —  or
>} they obtain a unique set of momentum eigenfunctions
imposing square integrability conditions alone (and these
are just the second and first Schrodinger descriptions, re-
spectively, for a>1), for — ] <c <} they obtain two possible
sets of momentum eigenfunctions. Also, to artificially sepa;

(4.19)

rate them, a superselection rule is invoked. Our work shows
that the proper specification of domains takes care of this
problem and there is no need for superselection rules, as
indeed there cannot be since always the wave machanical
description uses the set of a/l L, functions over

— oo <X < « as the representation space. Stated in the no-
tation of this paper, the problem arising with the formal dif-
ferential operator (4.4) is that in the range 0 <@ < 1, both

(x; @) and ¢¥P(x; a) are solutions of the eigenvalue equa-

tion with k as eigenvalue; so also is any linear combination.
However, while ¢{"(x; @) obeys the restriction (4.16),
PP(x; 1 — ) does not. It is therefore the domain specifica-
tion that leads, for each a and for each Schrodinger descrip-
tion, to an unambiguous set of momentum eigenfunctions,
were we to obtain these by solving (coupled) differential
equations rather than by the methods of Sec. 3.

APPENDIX A: ORTHOGONALITY AND OVERLAP OF POSITION AND MOMENTUM EIGENSTATES

In this Appendix we give the proofs of Egs. (3.7), (3.14), and (3.30). We begin with Eq. (3.14). From Egs. (3.8) and (3.13),
we find that the inner product of a momentum eigenvector with a position eigenvector is given by

(x; alk;a) = explin(k) — i€ (x))exp| — 4 (* + k%)) xk |* 17

X i (=D)L GAOLE k2T + )} + ixk {L (AL Kk 2/T (I +1 +a)}]. (A1)

To perform the / summations we make use of the relation [(Ref. 18, p. 1038, formula (8.976.1))]

i NLEAL (kD2 /T (I + 1 + @) = |xk| =z~ /(1 — 2))exp[ — z(x* + k2)/(1 — 2)11,(2|xk |2'*/(1 —2)), |z| <1,
/=0

(A2)

where I, is the modified Bessel function of order a. Here we wish to take the limit z— —1. Using the power series develope-

ment for I, [Ref. 18, p. 961, formula (8.445.1)], we get

221, (2|xk |22 /(1 — 2)) e J. (|xk ]). (A3)
In this limit, Eq. (A2) then gives
Z‘,O(— D'NL AL kT +1+ @)= 1 |xk|~%exp( } (& + k)T, (|xk |). ad)

Using this result, and a similar one with & —1 in place of a, in Eq. (A1) we readily obtain Eq. (3.14) of the text.
Next we give the proofs of Egs. (3.7) and (3.30). We first observe that showing Eq. (3.30) to be valid is the same as

establishing the relation

fo " dx x [, (R (K %) + ek kM (T, (1K [x) = 286" — R/ [k |.

(A5)

This is because Eq. (3.20a) gives the momentum eigenfunctions ¥ ’(x; @) explicitly as an even function of x puls an odd
function. Now it turns out that the proof of Eq. (3.7) can also be reduced to that of Eq. (A5). Let us therefore show this and
then give the proof of Eq. (A5). From Eq. (3.6) the inner product of two position eigenvectors is

(x; alx; @) = I (@Co(x)*Cox) $ N[LT ' ®DLF~ /T (I +a) + xxL DL/ (1 +1+a) ). (A6)
=0

If we use the result [Ref. 18, p.721, formula (6.643.4)]

1L e(x®) = |x| - aeff det!+ %=1y Qx|t'?), I+1+a>0, (A7)
0

then the righthand side of Eq. (A6), omitting the factors before the summation signs, reads

el e [ aree et g, @l 3 LE A+ @)
=0

+ x'x|x| ~ %€ f dr1*%" J,Qlx|t') S 'L/ +1 + a). (A8)
0 iI=0
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The / sums can now be performed [Ref. 18, p. 1038, formula (8.975.3)] and Eq. (A8) becomes

e [ dt ]t @Il AL @ + il e [ d | @Il M, @l

=IX’XI‘"“e"If dt [,y Qlx|t 20, _ @Ix'[t172) + (e 21x]t AW 21x'[ )]
0

By using this result on the right hand side of Eq. (A6) and
changing from ¢ to 2t '/2 as integration variable one readily
sees that the proof of Eq. (3.7) is reduced to that of Eq. (A5).
However, the proof of Eq. (A5) is very simple. We use
the classical theorem concerning Hankel transforms. For
any real number v > —1, it is known that if f(x) is a function
defined on the positive real line and g(p) is defined as

g0) = f " dx 2T, () ), >0, (A10)
then f can be recovered from g by
£() =f0 dy 37, ()E®). (Al1)

For positive y and y’, with v> —1, we therefore have

f: dx xJ(xpM, (') = 8 — ¥V, (A12)

Since a > 0, this result can be used for each term on the left
hand side of Eq. (AS); this expression then becomes

[1+ e(k"k)I6(1k"| — |k [}/ 1k |=28(k " — k)/|k],

thus proving Eq. (AS), and hence Egs. (3.7) and (3.30).

APPENDIX B: PROOF OF EQ. (4.2)

In this Appendix we show that the momentum eigen-
functions ¥{"(x; a) obey Eq. (4.2). Since this is not a local
differential equation, it is covenient to follow Eq. (4.5) and
define the “even” and “odd” parts of ¥{(x; @)

¥4 05 a) =1 [¥0x @) + Y= x )]
J, 1 (k|%),
= %Ik |1/2x1/2[ ) I(I I ) (Bl)

ie(k W, (\k |x), x>0.
As noted in Sec. 4, it suffices to define and deal with these
parts for x > 0 alone. Validity of Eq. (4.2) is now equivalent
to the validity of two coupled first order local differential
equations:

[71"— + ii]w;,g x5 @) = ikg; (x; @), ®2)
X X

This can be rewritten as
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(A9)
~
LG ), e}
= ikx"P =YD (x; a), (B3)
‘dd; fxe020 (x; )}
= ikx® 'Y, (x; @), (B4)
and in view of Eq. (B1) we have
d
o (' =, (kX)) = — [k |x! ~ T, (K |x), (BS)
d
L e ) = — K, (K2 86

However, these equations indeed hold [cf. standard recur-
sion relations among Bessel functions, Ref. 18, pp. 967,968,
formulas (8.472.1) and (8.472.2)]. Thus, Eq. (4.2) is
established.
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A new method to prove the absence of positive discrete spectrum of the Schrédinger operator is

given.

1. INTRODUCTION

Consider the equation

(V24 1%— p(x))u=0, xcR"A2>0. 0y}
Let us assume that

uel (= L*(R") . )
One of the most important steps in spectral analysis of the
Schrodinger operator (1) is to prove that the only solution of
(1) and (2) under some assumptions about p(x) is u==0. The
first result of this kind in potential scattering was obtained
by T. Kato.! It was generalized by many authors. In A.G.
Ramm? the boundary value problem was considered in do-
mains with infinite boundaries. In M. Reed and B. Simon’®
the result is obtained under more general assumptions about
p(x). Then, in Saito,* and in P. Mishnaevsky,’ the case of the
operator-valued Sturm-Liouville equation was treated,;
some results are known in case V? is replaced by an operator
Lu= —Z},_,(3/3x)(a;;(x)(0u/dx)), with a, (x)
= §,,(x), for |x| > R and which satisfies some other assump-
tions (M. Shifrin®). It is not our purpose to mention all the
papers which deal with the question under discussion. For us
it is important that all known proofs of the above mentioned
uniqueness theorem are rather complicated and technical. It
is our purpose to outline a new approach to this question and
to present a new proof of the known result. We shall not
present the result in the most general form but try to explain
a new idea in our approach. It should be mentioned that in
Ref. 1 the absence of positive eigenvalues of the Schrodinger
operator was proved under the assumption
| p(x)|<C (1 + |x|) ¢, a> 1, whereas here we handle only
the case | p(x)|<Ce ~ <.

2. THE SIMPLEST CASE

First let us consider the simplest case when p(x) is a
bounded continuous function with compact support. Sup-
pose that ueL *(R") and satisfies Eq. (1). Taking the Fourier
transform of both sides of the equation, we find

. A .

A2 —EHa¢)=(pw)&), &eR", (3)
where £ 2= ¢ 2 + - + ¢ 2 and the denotes the Fourier
transform

a¢)= (%)n f prl” EFu(x) dx . @)

Since pucL *(R") and has support in some compact set in R”,
its Fourier transform p2(¢ ) is an entire function of {eC".
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Further, ﬁ is an entire function of exponential type and its
restriction to each of the real subspaces of C*, Im{ = con-
stant, is in L (R"). The class of all Fourier transforms of L 2
functions with compact support in R” will be denoted L 2.
We then claim that Eq. (3) implies del 2.

Lemma 1: If ucL *(R") and satisfies (1) with A 2 > 0, and
if p(x) is a bounded measureable function with compact sup-
port in R", then 4L 2. That is, u has compact support in R".

If we assume Lemma 1, then the conclusion ¥=0 fol-
lows from the unique continuation theorem for Schrodinger
equation [3].

Proof of Lemma 1: We will check first that 2 is an entire
fu}¥:tion and, second, that del. 2. To see this note/\that
(pu)(&)/(A? — £?) = el *(R"). Itfollows that (pu)(£) = 0
onthesphereS, = {£eR™¢2? = A 2}, since 1/(A 2 — £ )isnot
square integrable over any neighborhood in R” of a point in
S, . Then, since (@)@‘ ) vanishes on {£eR":¢ 2 = A 2}, it fol-
lows by analytic continuation that ( ﬁ)@ ) vanishes on the
analytic variety in C", ¥V = {{eC™:{ ? = A 2}. But, the gradi-
entof¢ 2 — A 2doesnotvanishon V,so(a)(¢ )/(E 2 — A ?)isa
smooth function and, therefore, analytic on C". Thus,

4(C) = (PU)E)/(E? — A %) is an entire function.

To prove that del &, we will use a version of the Paley—
Wiener theorem (Ref. 7, p. 20, 21). It is not hard to verify
that each el 2 satisfies for some C,R > 0,

(i) [66)[<Clv| Ly EXP(R Img {), 5)
(i) the restriction of § to R" belongs to L *(R").

The Paley—Wiener theorem implies that the converse also
holds.

Theorem 1: If § is an entire function on C" satisfying the
growth conditions (i) and (ii), then pel 2. In fact, (i) can be
replaced by the weaker growth condition,

(@) [8@)|I<CexpR £ ]).
Further, v has support in {|x|<R }.

To conclude the proof of Lemma 1, we will prove that i
satisfies (i) and (ii), assuming that @ = pu satisfies (i) and
(ii). Since ucL *(R™), we already know that (ii) holds. We also
know that (A * — & ) #({ ) satisfies an estimate of the form (i).
It is then an immediate consequence of the “division
lemma,” (see Corollary 1.3, p. 8 of L. Ehrenpreis®), that 4
also satisfies an estimate of the form (i). This completes the
proof.

Remark: The hypothesis that p is bounded can be con-
siderably relaxed in Lemma 1. All that is needed is that
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& = (pa) is an entire function of exponential type. This will
be true if pu is a distribution with compact support; for ex-
ample, if peL € for some € > 0. However, to conclude the
result of the theorem, u=0, we apply the unique continu-
ation theorem which requires stronger hypotheses. See re-
mark 1 of Sec. 5.

3. EXPONENTIALLY DECREASING POTENTIALS

In this section we show how the idea of Sec. 2 can be
used to prove u=0 when the assumption on the potential
p(x) is relaxed to

| p(x)| <Cexp(—alx|), xeR" (6)

for some C,a > 0. The steps are the same except that an addi-
tional induction argument is required. First, recall that the
main point was to prove el 2, and the first step in this
argument was to prove that 4 could be analytically contin-
ued from R” to C". To handle potentials of the form (6), we
need a local version of this result. A more general version
will be stated and proved, since it isolates the crucial proper-
ty satisfied by the polynomial £ > — A 2 and is therefore per-
haps of independent interest.

Lemma 2: Let (2 be an open set in C". Suppose Q is a
polynomial on C", @ is analytic on 12, f is locally square inte-
grable on R"nf2, and

Qf =@, on R"n2, @)
if Q satisfies the following condition:

Eachirreducible component V of { £€£2:Q (8 ) = 0} inter-
sects R"n(2 in a real analytic set of dimensionn — 1, ®)

then f has an analytic continuation to all of 2.

We will postpone the proof of Lemma 2 to the next
section. Let us remark, however, that Q need not be a poly-
nomial—Q analytic on £2 is all that is needed. Further, the
property (8) satisfied by Q is exactly what is needed to con-
clude that f'is analytic, at least when (2 is a domain of holo-
morphy which is homeomorphic to a ball. That is, if {2 satis-
fies these conditions, if 2NR" is not empty, and if each f
satisfying the hypotheses of Lemma 2 is also analytic on {2,
then Q must also satisfy (8). We will not include a proof here,
since it does not seem relevant to the problem.

The other ingredient needed for the proof is a version of
the Paley—Wiener theorem for functions with exponential
decay. However, we need to have fairly explicit estimates of
the constants appearing in the theorem. The form stated be-
low is adequate. We will not give the proof, since any stan-
dard proof of the Paley—Wiener theorem will give the result
just by explicitly carrying through the estimates.

Lemma 3: Let € >0, a0, and suppose that ¢
u(x)eL *(R") has L * norm at most K. Then 4eL *(R"), i is
analytic in the strip |Im¢é | <a + 2e and there is a constant
C = C(€,n) dependending only on € and n, and independent
of a, such that

+ 2€)|x|

l[a(¢)|<K-C

Jor all & with |Im ¢ | <a + €. In the converse direction, if
deL *(R"), 4 is analytic in the strip [Im ¢ | <a + 2€ and satis-
JSies |(E)|<K in that strip, then € * 2 ly(x)eL *(R") and has
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L * norm at most K-C,, where C, is a constant depending only
on nande.

We can now prove the theorem.

Theorem 2: Suppose p(x) is a locally bounded, measur-
able function such that for some € >0,

| px)| <Ke *M.

Suppose further that ucL *(R") satisfies for some A > 0,

Au(x) + A 2u(x) — p(x)u(x) =0, xeR".

Then u=0.

Proof: Taking the Fourier transform of the equation
yields(A 2 — ¢ Da(¢ ) = (PENE ). Becauseof theestimateonp,
we have from Lemma 3, with o = 0 that ( pu) is analytic in
the strip |Im ¢ | < 4€ and bounded by KC ||u||, . in the strip
|Im ¢ | < 3€. Because A > — £ *satisfies (8), it follows that & is
analytic in [Im ¢ | < 4€. Further, from a standard division
lemma (see Corollary 1.3, p. 8 of L. Ehrenpreis®) it follows
that 4(¢') is bounded by C,K ||u, . in the strip |Im { | < 2¢,
where C, is a constant depending only on n and €. Finally,
from the converse part of Lemma 3, we deduce that e€'*u(x)
€L *(R") and, further, has L >-norm at most C,K ||| .x~;
where C, is a constant depending only on # and €.

We can then repeat the argument, except usinga = €in
Lemma 3, to deduce

& lu(x)eL (R"),
and has L 2 norm at most (C,)’K ||u{|, .-, - Continuing in
this fashion, we find that e***'u(x)eL (R") and has L 2-norm
at most equal to (C,)K ||ul| La@ny K = 1,2,... . It therefore
follows from Lemma 3 that

Iﬁ@)|<K||”||L'(R") exp(G;|Im § ),

for some constant C, > 0. Thus, by the Paley-Wiener theo-
rem, u must have compact support in the ball |x| < C;.
Therefore, the problem has been reduced to the case treated
in Sec. 2, and we conclude that u=0.

4. PROOF OF LEMMA 2

We will prove that if @ /Q is locally in L ? (or even in
L'+ on 2nR" and if Q satisfies (8), then @ /Q is analyticin
0. By factoring Q into a product of powers of prime factors
(in the ring of functions analytic on 2—not in the polynomi-
al ring), it is seen that it is enough to consider the case when
Qisirreducible. In this case, @ /Qis analytic on £2 if and only
if the variety {{ef2:® ({) = 0} contains
V = {£{e2:0 (&) = 0}. Now, sincedimg (VN2nR") =n — 1,
we must have @ = 0 on V2. Otherwise, there exists
x,€Vnf2 and € > 0 such that

dx
< +
jx - x“fx\e |Q(‘x)|2

But, the integral f,, _ . .. dx/|Q (x)|* must diverge. To see
this, choose linear coordinates (¢,...,t, ) near x, so that t =0
corresponds to x, and for each choice of (¢,...,2,),

t, — Q(t,...,1,) has a zero near ¢, = 0. This is possible since
dim; (V/NR"2) =n — 1. Then

dt f J‘ dt,
—— = |dtydt, | —————= + .
f FIOE i 1Q (t1otznnnt, )
Consequently, @ = 0 on ¥nR"n(2.
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Next, since V is irreducible, to prove VC {® ({) =0},
all we have toshow is that { @ (§) = O]JnUD VnU, where Uis
a neighborhood of a point z,eV. Thus, let x,eVnR"n(2. Then
the germ of the real analytic set { @ ({) = 0}nR" at x, con-
tains the germ of ¥nR" at x,, which is of dimension » —1. It
follows that the complex germ of the real analytic set
{@ (&) = 0}nR" at x, contains the complex germ of Q@ = O at
x, (a consequence of Proposition 2, p. 92 of R. Narasimhan,’
which is also a good reference for the other facts about ana-
lytic sets which have been used in the proof). This completes
the proof.

5. REMARKS

1. The method given in this paper can be used in many
cases when the potential p(x) has singular points. Our argu-
ments require only that pu be a distribution of exponential
rate of decrease and of finite order. For example, this will be
the case if for some ¢, @ > 0, p(x) is measurable and
St POO|< dx<e ™" However, the proof also uses the
unique continuation theorem for the Schrédinger operator
in R", which is only known for p(x)eL &, (R?) for ¢>3/2, and
inR"forp(x)eL?, g =¥n —1), n>5;9g=2forn=4;4>1
for n = 1,2. (See Refs. 3, 7, and 10).

2. It would be interesting to extend the ideas of this
paper in order to prove absence of the positive eigenvalues of
Schrodinger operator | p(x)|<c(1 + |x|) =% a> 1. The
Wigner-von Neumann example shows that there exists a
potential | p(x)|<c(1 + |x]) ~', which has a positive eigen-
value [Ref. 3, p. 223]. It would be interesting to understand
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from the standpoint of our technique why a = 1 plays the
role of frontier.

APPENDIX

We give an example which shows the importance of

condition (8). If £ >0, feC &(R?), k> 0 and u(x)

= f exp(—k |x — y|)@7|x — y|) ' f(y)dy, then
u(x)>0, ueL*(R®), —Au+ k*u=f(x), 4 u

+g(X)u — k*u=0,9(x)=(k*f+ Af)u~'(x). Thusk*>0
is the eigenvalue of 4 % + g(x), g(x)eC &. In this case
Q@)=L —k* =2 =k + kD and V= V,uP,,
V,={£eC87 + €3 + & — k*=0}. Hence ¥, does not
intersect R?, condition (8) is not fulfilled and hte operator
A ? + g(x) has a positive eigenvalue. The potential g(x) was
used also in the review article, D. Eidus, “The principal of
limit amplitude,” Russ. Math. Surv. 24, N3, 97 (1969).
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We consider the problem of determining rigorous upper and lower bounds to the difference
between the exact and approximate scattering phase shift, for the case of central potential
scattering. The present work is based on the Kato identities and the phase-amplitude formalism of
potential scattering developed by Calogero. For nonstationary approximations, a new first-order
(in small quantities) bound is established which is particularly useful for partial waves other than s
waves. Similar, but second-order, bounds are established for approximations which are
stationary. Some previous results, based on the use of the Lippman~Schwinger equation are
generalized, and some new bounds are established. These are illustrated, and compared to
previous results, by a simple example. We discuss the advantages and disadvantages of the present
results in comparison to those derived previously. Finally, we present the generalization of some
of the present formalism to the case of many-channel scattering involving many-particle systems,
and discuss some of the difficulties of their practical implementation.

I. INTRODUCTION

We are concerned, in this paper, with the simultaneous
determination of upper and lower bounds to scattering pa-
rameters, assuming that their exact determination is impos-
sible and that only an approximate calculation can be done.
Of course, for central potential scattering the numerical de-
termination of scattering phaseshifts to essentially arbitrary
accuracy is a straightforward matter. Thus the interest in
this problem lies in the possibility that it may point the way
to generalizations for the case of scattering by many-particle
targets, where the unambiguous and accurate determination
of scattering parameters is far from trivial.

For scattering by a central potential, the exact phase
shifts are determined from the solution of

Lu=u"(r)+ [k2=U@)—=1(0+1)/Plu(r)=0, (1)

subject to the condition that

u(r=0)=0, 2)
and having the asymptotic form

u(r—o) = A sintkr —lr/2 + 7). 3)

where A4 is an arbitrary factor usually taken to be sec, cscy
or 1. The choice of 4 is immaterial for exact solutions of (1).
This is not the case, however, for approximate solutions, in
which case an appropriate choice of 4 may be crucial in
avoiding some spurious, nonphysical singularities in the ap-
proximate phaseshifts. For a discussion of this point see
Refs. 1 and 2. We shall assume that the potential,
U(r) = 2m/#)V (r), is such that 72U (r ) vanishes both at
the origin and at infinity.

In two previous papers®* we discussed bounds to the
exact phaseshift, based on the so-called Kato identities®

“'Permanent address: Physics Department, York University, Toronto, On-
tario M3J 1P3, Canada.
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(these papers also contain references to earlier work on this
subject), viz.

kAA sin(p — 1) = J ulu,dr=R, “4)

o]

and

kAA sin(q — 14) — J u;Luy dr
Q

= — J (uy —uw)Luydr=R,, (5)
0
where 1, is any approximation to the exact solution of (1)
which has properties like (2) and (3), namely
u(r=0)=0 and u (r—w)
= A sintkr — /2 +754) .

Thus, if the potential is sufficiently weak so that
g5 = maximum of J |Go(r, YU (r)] dr <1,
0

where G,(r,7") is the free-particle Green’s function, then

A5, kr)]y 2,
1 —gu

where |s,(kr )| 5 is the maximum value of |krj,(kr ), j; being

the usual spherical Bessel function.
We note that

[R,|<

=b,, Q)

L= J [Lur|dr<.?,

- [Of: W -2dr f (WLu,Y a’r]m , 7

W being any suitable weight function. For the particular case
where

KXr)=k?>—U(@)—1(+1)/r>0 for all r, (8

we have shown® that a different bound applies, namely
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k: K%  Kr)
K*r) K*(ry) Kz(r2n+1)
where 7y, 75, *+, ¥, ., arelocal minima and r,, 7y, -, 1,, are
local maxima of K %(r), counted from infinity towards the
origin (r, > 7, > r3+-).

Both these first-order (in the “small” quantity %)
bounds have drawbacks: Thus (6) is evidently inapplicable to
strong potentials (particularly at low energies) since g,, be-
comes > 1. Also the factor g,, in inconvenient to calculate.
(9) on the other hand, in view of the restriction (8), is applica-
ble in essence only to s wave scattering.

In Sec. 2 of this paper we derive yet ancther bound on
R, which circumvents these drawbacks for many situations.
We also present illustrative examples.

In the case of the second-order (in the “small” quantity
u; — u) remainder R, we have shown’ that it is bounded by

|/ |as

lRl|<A f1=b2’ (9)

R, |< L1 =B, (10)

8m

where f(r) = 5 Go(r,r)Lur(r)dr, and the subscript M re-
fers to the maximum value of quantity in question. This sec-
ond-order bound, B,, suffers from the same drawbacks as the
first-order bound &,. In Sec. 3 we discuss an alternate form of
the second-order bound which, again, circumvents these dif-
ficulties for many situations. We also present generalizations
of bounds to R, that were derived previously® using the
Lippman-Schwinger equation, and obtain some new ones
using a related approach.

In Sec. 4 we consider the generalization of the Kato
identities to the case of multichannel scattering by many-
body systems. A number of bounds developed previously for
potential scattering are formally generalized to the many-
body case, and we discuss the difficulties connected with
their practical implementation. Finally, concluding remarks
are given in Sec. 5.

2.USE OF THE PHASE-AMPLITUDE FORMALISM TO
DETERMINE A FIRST ORDER BOUND

Calogero® has discussed in detail an alternate, though
completely equivalent, formulation of the problem defined
by Eq. (1). We shall term it the phase-amplitude formalism
since u is written as

u(r) = a(r)D,(kr)sin[8,(kr) + n(r)], 1n
and (1) is replaced by the two first-order equations

7= — % U(r)Dkr)sin2[8,(kr) + ()] (12)

and

a(r)y= - % a(r)U(r)D ,Z(kr )sin2 [6,(kr) + n(r )] ]
(13)

D,(x)and §,(x) are the amplitude and phase functions for the
modified spherical Bessel and Neumann (or Riccati—Bessel)
functions.® 5,(x) = xj(x) and ¢,(x) = — xn(x), since

5;,(x) = D, (x)sind, (x) and ¢,(x) = D,;(x)cosd,(x) . (14)

These functions, as well as the entire formalism, are dis-
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cussed in detail in Calogero’s book,5 hence we shall not dwell
on them here except to note that D,(x) is a positive, decreas-
ing function of x for /> 0. (Indeed D, = 1, D3 =1 + 1/x?,
DI =143/x* +9/x* etc.) We are using a somewhat dif-
ferent notation from that of Calogero. The correspondence is
a=a,n=06,D,=D,6 =6,s =j,c, = — A, where
Calogero’s notation is given on the right in each case.

Thus a(r) D,(kr) and 5(r ) are, correspondingly, the
amplitude and phase functions for any solution u(r ) of (1). If
7(r = 0) = 0 (so that u(» = 0) = 0) then the solution, (),
of (12) approaches the physical phase shift 7 as r—> .

Equation (13) implies that the amplitude function is

a(r)= a(oo)exp[ — % ) U()D Hkr)

xsin2{[8,(kr) + n(r)] dr'] , (15)

where a{ ) = 4. Also, any solution of (1) satisfies the
inequality

lu(r)|<|a(r)|D,(kr) . (16)
Now a(r ) is unknown unless 7(7 ) is determined, which is

equivalent to obtaining an exact solution of the problem.
However, it follows from (15) that

a(r)<|A|Z,(r) = |4 Iexp[ — | 1w dr'} .
(17)

Z (r ) is an easily calculable function, which decreases mon-
otonically with 7 to its asymptotic value of unity. For exam-
ple, if U= —2¢ =% a.u.(i=m = e = 1), which is the ex-
ample considered in earlier work,>*” we obtain _
Z(r)=exp[(1/2k)e *"]. Thus, Z,(r ) can be used to
bound |u(»)| and hence |R,|. However, for [ #0, Z,(r ) is
usually highly singular at the origin, so that it cannot be used
directly in the expression for R,. We recall, however, that
|u(r)| increased from |u(r = 0)| = O until at least the point
ro, Which is the first zero of K *(r ). (See, for example, the
discussion in Mott and Massey,® p. 25). Thus

lu(r)|<lur)|<|4|Y,(ro), if O<r<ry, (18)
where
Y(r)=2Z,(r)D;(kr). (19)
Defining
Y(r)=Y,(rp) if r<r,
=Y, ifr>r, (20)

we have |u(r)|<|4|Y,(r), so that

IR,[<|4 tf: Y, )| Ly ()| dr = b, @1)

In comparing this new bound b5, to the previous ones (6) and
(9), we note that it has the advantage that no restriction on
the strength of the potential (like g,, < 1) are necessary, and,
unlike b,, it can be used irrespectively of the sign of K *(r )
(i.e. />0). Nevertheless for those cases where b, and/or b,
are applicable, b, may not give the best value. Thus, for the
exponential potential example already quoted, if / = 0
(whence 7, = 0 would be taken), b, = |4 |, < b, since
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Y,(r )>1for all ». We can estimate the difference between b,
and b, easily, since b, < |4 | ¥,(0).Z ,, so that b,/b, S e'/**for
the example being considered. This ratio is thus not very
large, except at low energies in which case b, has a substan-
tial advantage over b;. (The low energy case (k—0) must be
treated differently, because the approximation

|sin2[8,(kr ) + n(r )]| = 1 which has been made in deriving
(17) is too crude. This, however, will not be discussed here.)
However, if/ #£0, b, isinapplicable, noris b, if the potential is
strong, whereas b, is easily calculated. For example if

U= — Uge ~* then since

Y,(r) = D (kr )exp[—zq,-:- f e~ D2(kr) dr’]

1 12 (U 1
1 _0 —2r
<[ + (kr)z] exP[ 4k (1+ PEE )e ]

Y,(r) decreases with r extremely rapidly to unity from the
maximum value ¥,(#,). This maximum value is itself not
much larger than unity. Thus if U, is not too large

k?* — U(ry) —2/r3 = 0 has the solution ry~1/2/k, so that
Yi(ro = v'2/k)~V"3exp[(3U,/8k )e ~>V'** ] which is larg-
est at k = 21/2 when it takes on the value ¥,~
V'3exp(3U,/e ~2V** /8k). This is about 1.35 if U, =2 and
1.56if U, = 5. The situation only improves for larger / values
since r, increases with /. In short for /> O the first-order
bound b, will be very nearly equal to |4 |, forall k,and .¥,
can be made small by appropriate choice of the trial function
u, as we have demonstrated previously.>* Thus we now
have a calculable first-order bound suitable for any / and any
strength of the potential.

3. SECOND-ORDER BOUNDS

If w = u; — u, then w must satisfy the inhomogeneous
equation

Lw=Lu; 22)

for which the solution can be formally written (see, for exam-
ple Mott and Massey,® Ch. IV, p. 70).

w(r)= Jw G (r,r)Lu (r)dr, (23)
where
G(rr)= — -f; u(r )ia(r_) . 24)

u,i are linearly independent solutions of Lw = 0 which are
regular and irregular at the origin (i.e. #(r = 0) = 0 and
#(r—0)#0, indeed usually ¥ is singularatr = 0).7_ andr_
are, respectively, the smaller and larger of r,7’ while

k /c = Wronskian of {u,i7}= kAA, A, A being the asymptot-
ic amplitudes of u,# respectively (these may be chosen arbi-
trarily, in particular, they may be chosen to be unity). If the
potential U can be divided up into a “solvable” part U, and
the remainder, i.e., U = U, + U,, then rewriting (22) for-
mally as (K — U)Dw = U,w + Lu,, where L=K — U, it
follows that
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w(r) = J G, (r, YU, (rw() dr

+ f G,(r,/)Lu(r)dr, (25)

where G, is the Green’s function (24) but constructed from
the (known) solutions of (K — U )w = 0.

It follows, from (25) that
f G,(r,r)Lu(r')dr

[1 — max of f |G\ U,| dr} , (26)

which is a generalization of the bound B, (Eq. (10)), and

indeed reducestoitif U; = Oand U, = U.Itis usefulin cases
where

|w(r )|\ <max of

gy = max of J |GoU | dr>1
but
g1 = max of j |G \U,|dr<1.

The Lippman-Schwinger equation can be used to gen-

erate yet another class of second-order bounds, somewhat
similar to (10) (or its generalization (26)). This is because

2
<f|w|2p dr

X fp_' | Lup | dr @7

|Rzl2 =

wauT dr

by Schwartz’s inequality, where p is some suitable, positive
weight function (and such that all the indicated integrals
exist). The integral f|w|’o dr can, in turn, be bounded by
successive applications of Schwartz’s inequality to the inte-
gral equation that it satisfies, like in the approach used re-
cently by Martin,” in his paper on the boundedness of the
total cross section in potential scattering.

For the sake of simplicity we first consider a particular
case where, if

Lu, =U; — Duy, (28)

the weight functionp istaken tobe |U; — U |. Note that (28)
can be viewed either as a definition of U or, alternatively,
ur can be thought of as the exact solution of the model prob-
lem (1) where U has been replaced by a solvable potential
Ur. Then if G is the Green’s function constructed from the
known solutions of (K — U, )v = 0, it follows from (25)
(with G, = G, U, = U, — U, Luy = (U, — U)uy) that

[wrio, —vi= [ [wo, - vie @, - Oy
+ ”w*lur — U|G(Ur — UYib,

(29)

where, in order to simplify the notation, we have suppressed
the differentials dr, dr’ and have written  for w(*'), etc.
Following Martin,® we apply Schwartz’s inequality to each
of the terms on the right, and obtain
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g2

J w1, —viare s

— f'“” \Uy —Uldr (30)
provided
err= [ [l —viiG P10~ U<t @Y

Thus it follows from Eq. (27) that

IR;|< f|url Uy — U| dr = kB, . 32)

1_

For example, if u, = s,(kr ), the solution with U;=0 (so
that G, = G,, the usual free particle Green’s function), (32)
becomes

taniy, = 174 , (33)

|tany —

tanyg | < L
1 B
where we have used the usual normalization, 4 = secy,
A, = 1 and where we have written & tany, for fu,Lu, dr
= — f5,%(kr)U(r) dr, k tani, for fsi(kr)|U(r)| dr, and
assumed that g2, = ff|U |G,|*|U | < 1. Note that |tan7, |
<tan7 . Equation (33) implies that the Born approximation
to a particular phase shift will approach the exact value as k
and/or / become large. Indeed, g,/(1 — g5) is a generally
decreasing function of k and /, and depends on the potential
strength. Though readily calculable, g, /(1 — g;) cannot in
general be evaluated in closed form, but simple, explicit
(though crude) bounds to it are readily written down, which
make the above observation obvious: Thus gz < n,0,/k,
where v, = §|U | dr is the potential strength, and
n, = max|s,(kr _)c,(kr. )| is a number close to unity. (34)
then reduces to |tany — tany,|/tanify < nvy/(k — nvp). Al-
ternatively, Martin® has pointed out that g3 <1 /(2] +1),

where
1 IU(")HU("')' 3,43
T (4m)? J‘J- |r —r'| drd’r

which demonstrates explicitly the improvement of the Born
approximation with increasing / (for potentials where 7 ex-
ists and is <2/ +1). More particularly, for the square well
example considered previously,® we obtain for the s—~wave
(=0):

K= kR

FIG. 1. Comparison of the bounds 5 and B, (see text} for a square well

potential of strength v, = 2mR 2VO/‘fi2 = land /= 0. B, is here the expres-
sionf, % ,/k (1 — g,,) given in Table 1 of Ref. 1, whereas B, is givenin (33)
and(34),andtany, = tan7j, = (v,/2K )[1 — (sin2K )/2K ]forthisexample.
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v sin2k | cos2K—1  sin®2K
2 0
= 1 — . (34
4K? + K + K? 4K? (34
Comparing the bound B,, equation (33) to B, given in (10)
(see Ref. 3) for this example we see that the results are com-
parable though B, is somewhat better at all energies. The
ratio B,/B, is plotted in Fig. 1 for a well of unit strength
@ = 1. .
Of course analogous results may be obtained by using
an arbitrary positive weight function p (but such that all
indicated integrals exist), since (25) implies that

f (w|’p = f f w*oG, Unih + J f w*pG,Lii . (35)

Performing similar manipulations to those preceeding Eq.

(30) we find that
gngzr> f,LuT,dr

R <k = (g0 +
X fp"lLurlz dar, (36)

&n

where

&r = [ [ plGiIL |,
0= | [plGPIT,
= [

and

= j j U,IIG, | Ts), provided g, < 1.

Clearly variations on this theme are possible.

The phase-amplitude formalism can also be used to es-
tablish a new second-order bound, somewhat analogously to
that which was done for the first order bound in Sec. 2. Thus,
substituting (23) into the expression (5) for R, we obtain

R,= — f J G (r,/)Lu, (r YLu () drdr . (37)

Since G (r,r') is constructed from the exact solutions #(r ) and
#(r ) [see Eq. (24)], each of which is bounded, in absolute
value, by |4 |Y,(r) [Eq. (19)], it is clear that a bound to |G |,
hence to |R,| can be established. There is one difficulty, how-
ever: as has already been pointed out Y,(r) is, in general,
highly singular at the origin, hence some means must be
found of avoiding this region. This can be done because both
w(r) =u,(r) — u(r)and G (»,r') vanish at the origin, hence
there is no purpose in using a singular function to bound
them near the origin. Indeed, since 4 and u; both vanish at
the origin, |w| = |u; — u| will, of necessity, initially in-
crease until it reaches a (locally) maximum value at some
point 7> 0. Also, for the type of potentials considered here,
uxr*'and #a«r~'for smallr, sothat G (r_/r_ ) r.
which is an increasing function of r,#’ for small 7,#' (indeed it
increases most quickly along r = r'). Thus there exists an
r," >0 such that |G (n,")|<|G (#,',r,')| for r,¥ <r. In either
case, defining
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Y(r)=x(r) if r<r,
= Y,(r )
it then follows from (27) that

fR2|<—;(—[J;w |Y (r YLur(r)| dr]2=B3. (38)

Comparing this to the first-order bound (21) we see that
B,~b?/k. The bound B;, unlike B, (Eq. (26)), has no re-
striction like max of §|G,U,| dr < 1. It requires, however, the
choice of r,. This number must lie within the region where
|u — uz| or |G (r,7') (Eq. 24) is an increasing function. Ideal-
ly, one would like to choose 7, as large as possible since Y,{(r )
increases monotonically as —0. We have not found, to date,
a simple way of choosing a maximum r, on the basis of the
properties of U (r ) only. Thus at the moment the choice of 7,
would have to be made on the basis of an approximate (pow-
er series) representation of w(r ) or G (r,#’) valid near the ori-
gin. This is clearly an inconvenient and inefficient way of
choosing 7, and the resulting bound would be unnecessarily
large. An alternative way of overcoming the problem that
Y,(r) (in general) singular at the origin, might be to choose
u in such a way that u . ==0for r<some r, > 0, (but such that
u’,u’y exist and are continuous everywhere and, of course,
u has the proper asymptotic form). The lower limits on the
integrals in (37) and (38) are then not zero but 7, > 0 and the
difficulty associated with the possible singularity of Y,(r ) at
the origin would be avoided.

Lastly, we might remark that though we have consid-
ered individual partial waves thus far, there is no difficulty in
writing down generalizations of most of the results to the
case where the entire scattering amplitude and wave func-
tion are considered (see Sec. 4 below). Such an approach
might be particularly useful for the case of scattering by
nonspherical potentials (such as occur in the scattering by
molecules), since in that case the determination of “exact”
results by numerical integration is not at all trivial.

if r>r,

4. GENERALIZATION TO THE CASE OF
MULTICHANNEL SCATTERING INVOLVING MANY-
BODY TARGETS

We have previously stressed that the principal purpose
of studying the potential scattering case is that such study
may suggest generalizations which are applicable to the mul-
tichannel scattering processes that involve many-body tar-
gets. Indeed many of the results developed above for poten-
tial scattering generalize formally in a straightforward way,
though their rigorous implementation is quite another
matter.

To achieve the generalizations we first consider the ex-
tension of the Kato identities to the many-body problem. We
consider any collision problem describable by the Schro-
dinger equation

HY, =0, (39)
where H = H ~— E, H being the exact Hamiltonian of the
system and E the total energy, which is assumed to be

known. The subscript / stands for the collection of indices
needed to specify the possible degenerate solutions at energy
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E. If A; is the exact scattering amplitude, obtained from the
exact solutions ¥,, and 4 [ is an approximation obtained
from some approximate or trial solutions ¥ [, then the fol-
lowing identity is obtained by using Green’s theorem:
g7 1 2m,
A=A dr #
where m; is the reduced mass of the system in the jth chan-
nel, dr is an element of the configuration space of the collid-
ing system and ¥,, ¥ Tare, respectively, exact and approxi-
mate solutions having the appropriate asymptotic form. We
stress that the identity holds for rearrangement as well as
direct collisions, provided the wave functions have the cor-
rect asymptotic form, that is, that they satisfy (39) in the
region where the interaction between the colliding system (in
both incident and outgoing channels) can be neglected. For
example for a particle (x) scattering from a many-body tar-
get (coordinates r) the total Hamiltonian is

7

H= — —
2m

f UrxHW T dr, (40)

Vi+V®+H, +Vxr), 41

where H , is the Hamiltonian of the isolated target. If
H,¥,(r) = E;¥(r), then at a total energy E = #’k }/2m
+ E; the exact solution of (39) that describes the collision
process must have the asymptotic form
ik px
¥ (xr) — T+ S 4, ex
xro 7
where in (42) the sum is taken over all states fthat are acces-
sible at the energy E. Similarly the identity (40) requires that

v(r), 42)

ikx
Wixr) — WO+ T ALE

X—> 0 1

?(r), 43)

where 4 | are some approximate scattering amplitude ele-
ments (in the simplest case some or all of these may be zero).
!?7]. in (40) refers to a solution of (39) in which all k, are
replaced by — k,, i.e., incoming waves (see, for example,
Ref. 10, p. 116). The derivation of (40) assumes that the
isolated target eigenfunctions are exactly known. This, of
course, will not generally be the case, but we shall not consid-
er this additional complication at present.

For rearrangement collisions the asymptotic forms will
be more complicated than the example given in (42), and the
derivation of (40) is somewhat more involved due to the non-
orthogonality of the initial and final state eigenfunctions
(Ref. 8, pp. 436-437), but this does not change the validity of
the identity (40).

Though we have written (40) for elements of the scatter-
ing amplitude, analogous identities can be written in terms of
related quantities, such as the transition matrix 7,

= — (27#’/m;) A;, S-matrix (S = I — iT) etc. Indeed, in

practical applications the wavefunctions and amplitudes
would be partially analyzed, and (for greatest convenience)
the identity (40) would be written for the elements of the
real, symmetric reactance or K-matrix (see, for example,
Ref. 11, pp. 137-145).

We note that the remainder term

R, =g f Ay dr, (44)
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where
1 2m
Cj = — ’
4y #

is first order in the “small” quantity &If,-T — ¥, since
HWT — %)= H¥T. Furthermore H¥ | vanishes outside
the interaction region, hence the main contribution to R,
comes from the interaction region. Indeed, if % [ is a solution
of a model problem H, ¥ T =0, where H is obtained from
H by replacing the interaction potential ¥ by a solvable
model ¥, then H¥ T = H, W7 + (¥ — V)& (alternati-
vely, this may be viewed as a definition of V., if ¥ [ is given),
and (44) becomes

R, = f WV — VW Tdr. @5)

An identity in which the remainder is second order in
“small” quantities follows immediately from (40):

d; =47 —¢ f¢f*I§W,Tdt +R,, (46)
where
Ro=c, f @7 — By HYTdr. “7)

Strictly speaking, because HW® vanishes outside the interac-
tion region, @ | need be a good approximation to ¥; only in
the interaction region for R, to be second-order “small”
quantity (i.e., @ need not be the same as ¥ Tand indeed
need not have the correct asymptotic form). In standard ap-
plications, though (say the Kohn variational method), it is
usual to take @ | to be the same as ¥ . This ensures, also,
that the stationary approximation Kj; is also real and sym-
metric, though the trial values by themselves may not be. For
a detailed discussion of this point see Ref. 12, Chap. 2. We
might note, in passing, that approximations like the polar-
ized-orbital approximation for (say) elastice * — H scatter-
ing can be viewed as being variational in the sense of (46), but
with @ 7 ¥ 7. Indeed if ¥ T is taken to be F (x)¥,,, (r;x), the
usual polarized orbital trial function (see, for example, Ref.
13), while @ " = G (x)¥,,(r), where ¥, (r) is the target
ground state, then the variational ansatz

(8B, |H |W,) = (5GW,,|H|F¥,,) =0 (48)

yields the usual polarized-orbital equation for the coefficient
F, viz.,

(¥, (D|H ¥, (%) F(x) =0, (49)

and (46) implies that the phase shifts obtained form (49) are
equal to the exact ones to within the second-order remainder
term o« {(G¥,, — Yexacr)H (F¥,o — Wexacr ) xd’r.

The identities (40) and (46) imply that if bounds could
be determined to the remainder terms R, and R, [Eq. (44)
and (47)], then bounds to the individual transition matrix
elements (or, equivalently, the K—matrix elements) follow
immediately, since if |R,|<B,;, say, then |4, — 7,-]<Bj,-.
Various formal bounds of the type considered previously for
potential scattering can be written down. Thus

Ril<I9luc, [ 1H0] ar, (50)
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where M refers to the maximum value of the expression in
question, and

RiP< 1 Pwiar [ ez, 6D

where W is a suitable weight function, The problem is thus
“reduced” to the determination of bounds to |¥;|,, or
S|, |*| W dr. Similar inequalities hold for R, except that ¥,
in (50) and (51) must be replaced by §¥, = T — ¥,

All the bounds that were derived previously for poten-
tial scattering by use of the Lippman~Schwinger equation,
generalize in a straightforward way to the many-body case,
since the generalized Lippman-Schwinger equation is read-
ily written down. For example, if @ ] is taken to have the
correct asymptotic form, then §¥; satisfies

S¥(r)
_ f G () [V(ASY,H) + HW ()] dF, 52)

where G is the Green’s function constructed from the
(known) solutions of (39) with the interaction part of the
Hamiltonian, ¥ = 0. It follows immediately from (52) that

| f G (r,PHY [(#) df

(87| < LA (53)
1 — MAX f |G (r, AV (P)] dF

provided the denominator is positive. Bounds of the type
(30) are similarly obtained from (52), though they are clearly
much more complicated because the Green’s function ap-
pears quadratically there.

It is, unfortunately, impossible to evaluate such bounds
without making approximations (and thus destroying the
rigor of the bounds), because the Green’s function in this
case is very complicated. Thus, for a particle being scattered
by a many-body target, G (7,7) can be written as

G (x%rf) = 5 G, (x.Q)¥, *®)V,(r), (59

where the sum is taken over a complete set of eigenstates ¥,
of the target, and’
1 eikulx — %

O =~ =%

(55)

is the usual free-particle Green’s function with #°k_2/2m
=FE — E_, E, being the target eigenenergy, E the total en-
ergy of the colliding system, and m the reduced mass.

An obvious approximation, which would reduce the
problem to tractable proportions is to replace all the G, in
(54) by some average value G, corresponding to some aver-
age k; (which thus enters as an adjustable parameter), and
then to evaluate the remaining sum by closure to obtain

G (X,%5,5,0)~G5;(x,x)6 (r — F) . (56)
Indeed it is possible to generalize this somewhat by keeping a
finite number of terms in (54) explicitly and summing the
remainder using closure, as has been done in connection
with the second Born approximation.’*!3 Still simpler esti-
mates could be made by replacing the exact ¥, in (50) and
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(51) by an (optimized) trial from ¥ . In the case of such
nonrigorous approximations to the bounds more credence to
the result would be lent if two different nonrigorous esti-
mates of the bound (but both obtained by using the same trial
function) gave similar results.

The actual utility of such approximations in conjunc-
tion with the estimation of bounds has to be tested on such
relatively well studied systems as scattering by H and He
targets. Even then the problem is by no means simple be-
cause the evaluation of integrals like those in (50) and (51) is
not easy. Indeed one would like to avoid expressions that are
quadratic in the Hamiltonian, if at all possible since, except
in some special cases, such expressions become intractable.
In practice, it would probably be necessary to determine ap-
proximations to such integrals, preferably by expressions
which are upper bounds to them, as has been suggested pre-
viously.? It should be pointed out that even if bounds to
|¥; |y are not known, (50) can be used as a criterion for
determining ‘““‘optimal” values of any adjustable parameters
in ¥, since |¥,|,, is known to be finite, hence the bound to
|R,| (and, indeed, to |R,|) is minimized when §|H¥ 7| dr is
minimized. Similarly, minimization of the variance (or
“least squares”) integral in (51) also minimizes a bound to
the remainder (though, in general, a different bound). Such
“least squares” criteria have been used with success for sin-
gle-channel elastic scattering by hydrogen atom targets in
the past, most recently by Abdel-Raouf.!®

5. CONCLUDING REMARKS

We have considered further the problem of determining
simultaneous upper and lower bounds to scattering param-
eters, by bounding the remainder terms that arise in the Kato
identities which relate the exact to the approximate results.

For the case of (central) potential scattering, where
both exact results and rigorous bounds are readily calcula-
ble, we have established a number of new bounds, some
based on the use of the Lippman-Schwinger equation and
others on the phase-amplitude formalism of the scattering
problem. The latter have the advantage over the former in
that they are applicable to potentials of arbitrary strength.
Partial-wave scattering by an exponential potential, as well
as by a square well potential have been used to illustrate
some of the results, and to compare them to others that have
been obtained previously.

It is probably fair to say that with our present and pre-
vious studies,** as well as those of other researchers (Refs. 5,
7,9, 17, and citations therein), the problem of bounds in the
case of scattering by central potentials is reasonably well
understood, though a direct comparison of the different ap-
proaches would be worthwhile.

However, the purpose of studying bounds in the case of
central potential scattering is in that they may lead to useful
(tractable) generalizations to the case of multichannel scat-
tering, involving many-body systems. We have thus consid-
ered the Kato identities for such multi-channel scattering,
and have shown that at least those bounds which are based
on the use of the Lippman-Schwinger equation generalize in
a straight-forward way to the many-body case. The resulting
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expressions are very complicated, however, and cannot be
evaluated without the introduction of nonrigorous approxi-
mations. In addition, the Kato identities in this many-body
case (at least as presently formulated) presuppose that the
separated colliding system can be exactly solved which, ex-
cept in the special case of hydrogen-like targets (and/or pro-
jectiles) is not the case.

Thus at present, in the case of multichannel scattering
by many-body targets, we are only in the position of deter-
mining approximate bounds to the individual X (or relat-
ed)—matrix elements. How useful such nonrigorous esti-
mates will be will have to await their detailed study and
comparison with experiment as well as with those few multi-
channel systems (such as e * —H,He scattering) where nearly
exact calculations are, at least in principle, possible. We
must stress that it is multi-channel processes that are of in-
terest to us here. It is well known that “‘exact” single-channel
(elastic) e * —H results are available, but comparable results
are not yet generally available when many channels are open
(including, in particular, rearrangement channels such as
occur in e " —H scattering above 7 eV). Clearly such calcula-
tions would be very desirable.

It is important to continue seeking other expressions for
the bounds, particularly expressions that avoid quadratic
Hamiltonians and many-body Green’s functions, as these
obviously become extremely complicated even for few-body
systems. In addition, the computation of bounds to scatter-
ing parameters in the many-body case requires the develop-
ment of efficient methods of calculating multidimensional
integrals or, at least, bounds to them. This in itself is a non-
trivial problem.
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The existence of the M@ller wave operators is proved for Hamiltonians of the form
H= — 4 + asinbr®/r? + V(x), where Vis a short range potential, generally noncentral, and «
and 3 take on suitable values including the casea = 1, 8> L.

1. INTRODUCTION AND RESULTS

All of the main features of quantum mechanical poten-
tial scattering with short-range potentials are now well un-
derstood.' However, there are long-range potentials of an
oscillatory nature for which the situation is not yet so clear.
Our purpose here is to make a contribution to this latter
theory.

We shall be working in R " with Schrodinger operators
of the form

H= — A+ asinbr/r’ + V(x), (1.1D)

where Vis a short-range potential which is not necessarily
central. We shall prove the existence of the Méller wave
operators for these potentials. For suitable & and 5 the exis-
tence and completeness of wave operators for Hamiltonians
of the form (1.1) with ¥ a central short-range potential have
been recently obtained.**

Long-range oscillatory potentials of the form V-W,
where W is a short-range R " valued function, have been
considered in the literature by various authors.>® However,
Hamiltonians of the form (1.1) are included in this setup
only for @ + > 2, and hence do not include what may be
considered to be the benchmark case, namely » ~' sinr. We
note that a modification of the methods of this paper can be
used to handle highly oscillatory potentials such as e” sine”/
(1 + #¥in place of ar 7 sinbr™.

In taking conditions on our short-range potential we
shall follow the prescription given by V. Enss.” Let H,, be the
free Hamiltonian and let F (-} denote the projection operator
from L (R ") onto the subspace of elements in L ? with sup-
port in the set specified within the brackets. We shall sup-
pose that

(i) Vis a real-valued potential which is H,-bounded,
with H,-bound less than 1, and

(i) ||V Ho + )~ F(|x|>r)|=h ()eL 'R * dr).

Theorem: Under the above specifications for V, the
Mgller wave operators for the Hamiltonian (1.1) exist for
28 +a>2,orfB>landa+f>1,and B —a <2 forn>3,
B—a<n/2forn=123.

We should remark that the condition f — @ <2 or
B — a < n/2is needed only to eliminate a strong singularity
at the origin. If we had used the potential @ sinbr*/(1 + r)”,
this condition would not be needed. We should also note
that, for ¥ = 0, B. Bourgeois® has shown the existence of the

“'Research partially supported by NSF Grant MCS79-02538,
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wave operators for the Hamiltonian (1.1) for 8> } and
a+fp>1.

2. PROOF OF THE THEOREM

Our proof will be constructed with the aid of several
lemmas. Let

H' = — A+ asinbr/#” Q2.1

and let £2 &+ be the Méller wave operators for A ’. Our first
lemma is of an elementary nature and is intended to indicate
those facts about {2 ;* which are sufficient to prove the exis-
tence of the wave operators for H.

Lemma 2.1: Suppose that the potential ar ~ ? sinbr” has
H-bound zero and that £2 ;* exists. Suppose, also, that there
is a dense collection 2 C D (H,)CL *(R ") so that fe & im-
plies there is an @ > 0 such that

IF(|x| <alt 2 5 e~ “(Hy + ) fleL '(Rdr). (2.2)
Then the wave operators for H exist.

Proof: Let us first note that by the hypotheses on V and
ar 7 sinbr”, the potentialar ~ # sinbr* + V (x) has H,-bound
less than 1, and thus A has a unique self-adjoint realization
and D(H)= D (H')= D (H,). Thus exp( — itH )2 ;* f

eD(H)\D(H').
Next we note that
0N Y (HH) = s-lim e""e~ "0, 2.3)

provided this limit exists. By the usual technique used to
prove Cook’s theorem, i.e., integration of the derivative of
the right-hand side of (2.3) evaluated at f€ &/, we have

||(e””e - itH et\]lef is’H’)n ()T f”
!
<f Ve 2y flldr
5

< f | V2 e = £ || dr. (2.4)

We have, of course, used the intertwining relation to get the
last integral.

We may now write
|[V2e " fll=VH +)"'2se ""(Hy+ DS

2.5)
Further,

IV@EH +0 '2ge " Hy+ D]
<V +i) 'F(|x| <alt )2 e P (Hy+ D f|

+IVH + )7 F(x|>alt D2 e " (Hy + D) f .
2.6)
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Since ||V (H ' + i) ~'|| is finite, by the hypothesis (2.2) the
first term on the right of (2.6) is integrable.

Since V'is a real-valued potential, it follows that
|V (H, + i) ~'F(|x|>alt |)|| is integrable if and only if
|1F (|x|>a|t DV (H, + ©) ~ ']} isintegrable. Also, using the fact
that the potential ar ~—# sinbr” is H, bounded, it also follows
that ||V (H' + i) ~'F(|x|>a|t |)|| is integrable if and only if
|F (x| >alt DV (H' + i) || is integrable. Now

IF(x[>als DVH" + 7|
=|[F(|x|>a|t DV EH, + )~ "Ho+DH + )7

<||(Ho +DH'+ )M IF(x|>alt DV (He+ i)~ 'l.
Q2.7

By our hypothesis on ¥ we see that the term on the right is
integrable. Thus the second term on the right of (2.6) is inte-
grable. Hence, the lemma is established.

We see from Lemma 2.1 that in order to prove the theo-
rem of Sec. 1, it is sufficient to establish (2.2) for a suitable
dense set of functions. The remaining part of the paper is
devoted to establishing this fact and constitutes the bulk of
the work in this paper.

The hypothesis (2.2) involves only the operators H, and
H' Iff—a<2forn>3orf —a<n/2forn = 1,23, then
H'is Hy-compact and thus H,-bounded with zero H,-bound.
Consequently, it has a unique self-adjoint realization. Fur-
ther, since the potential of H ' is radially symmetric we may
reduce the study of the self-adjoint realization of H ' to the
study of the self-adjoint realizations of certain ordinary dif-
ferential operatorson R *. Asis well known, the self-adjoint
realization of H ' is unitarily equivalent to a direct sum of
certain self-adjoint realizations of the ordinary differential
operators in L (R *) given by

, d’ v(l,n)

Hi=—gat =5

where v(in) =1({+n—2)+ (n —1)(n —3)/4and V,(r)
= ar " sinbr”. A detailed discussion of the exact boundary
conditions needed at » = 0 will be found in the appendix to
Ref. 4.

In order to get the estimate (2.2) it is necessary to study
certain solutions to the equation

H;¢=A1%, A>0. (2.9)

Lemma 2.2: Assume o, >0 and either 28 + a> 2, or
B>1anda + B> 1. For every positive integer m there exists
a finite number of points in R * so that if I is any open
interval with compact closure in R * which is disjoint from
this finite set of points, then for A€l there exist solutions
¢ *(r,A) to (2.9) with the following properties:

(i) ¢ * and dg * /dr are m-times differentiable in A,

+ V. (), (2.8)

and
k

(i) *(rA)=e*" + [ > (At

i=1
reta G| o),

where ¢ (1 ) are infinitely differentiable, g~ (r)=o0(1)as
r—ow,and ¢t , and p* and their first m-derivatives with
respect tod are O (r =2 ") as r—oo.
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Let us delay the proof of this until later and use it now to
complete the proof of our theorem. First we state one further
lemma about solutions to (2.9).

Lemma 2.3: Suppose 5 — a < 2; then (2.9) has a solu-
tion n(r,A ) such that, for AeR *,

(i) 7(r,A ) and d5(r. A )/dr are infinitely differentiable in
4,

(iia) p(r,A }—0 as r—0for ! #0 or n#2,

(iib) r'*(logr) ~'d5(r,A )/dA—0 as r—0 for [ = 0,
n=2.

This is Lemma 3.3 of Ref. 4. The conditions (iia) and
(iib) are the boundary conditions needed to get the proper
self-adjoint realizations of H ;. See the appendix to Ref. 4 for
details.

We now use the previous two lemmas to complete the
proof of the theorem of Sec. 1. Since ¢ * are linearly inde-
pendent solutions to (2.9), we may write

nrA)=cid) “(rd)+c(A)p ~ (r ),
dn(rA) _ dé *(rh) d¢ —(rA)
g oW T ald) /=

It follows that ¢,(4 ) and ¢,(4 ) are m-times differentiable
functions of A in 1. Using the expansion (ii) for ¢ * given in
Lemma 2.2, we may write

n(rA) = d(A) sindr + dy(4) cosdr
+[ S o o+ e 0]

j=1
[ 3o g @+ e+ o),
- (2.10)

where now ¢;* (4 ) are m-times differentiable, and ¢;*, ; and
p satisfy the same conditions as¢;*, | andp* of Lemma 2.2.
Sinced ;] + d 3 #0, we may divide both sides of (2.10) by this
quantity and get another solution for (2.9) which satisfies the
same properties as the old solution, except it may now be
only m-times differentiable. Thus we may suppose that we
have a solution of the form (2.10) with d,and 4, m-times
differentiable on fandd ? + d3 = 1. The Monodromy theo-
rem tells us that there is an m-times differentiable function
& (A ) on I such that

di(A) + idy (1) = ¥, (2.11)
Thus in (2.10) we may write
d\(A )sindr + d,(A )cosdr = sin[Ar 4+ 5(1)]. 2.12)

If we work with the free Hamiltonian, then the expan-
sion (ii) of Lemma 2.2 is valid and there is an m-differentia-
ble function §,(4 ) and a solution 7,(r,4 ) to

d’¢ v(iln) , .5
T T =47 (2.13)
which has the same properties as 7(7,4 ) and
No(rA) =sin[rd 4 5o(A)] + ¢ * (r A )"
+c (rAd)e + p(r,A). (2.14)

In this case the functions ¢ * and p and their first m deriva-
tives with respect tod are O (» ~'?~ Y as r-> 0.
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Lemma2.4:1f28 + a>2,orif >}anda + B> 1,and
iff—a<2forn>3and S —a<n/2for 1<n<3, then the
wave operators for H’ exist.

Proof: We first note that the condition 8 — a <2 for
n>3orf —a<n/2for 1<n<3 implies the H ' is H,-com-
pact and hence H-bounded with zero Hy-bound. Hence H'
has a unique self-adjoint realization.

The proof of the existence of the wave operators for H'
now follows standard techniques by using the expansions
(2.10), (2.12), and (2.14). Let us indicate some of the details
since there are some small points which may need
elucidation.

Let us set

5:(A)=8(A) — 844). (2.15)
If feC o) let us set

£ = f To(rA ) F ) dA, (2.16)

24P = r 2(rA)de 2P F(A)dA. (2.17)

The operator £2 ;" is actually unitarily equivalent to the
wave operator for H ', but we shall not change notation. We
shall also not change our notation for H' or H, under this
unitary equivalence. We note that we have suppressed the
subscript / so that we are working generically. We also note
that, as 1, f (1), and / vary, we get a linear manifold of func-
tions in an infinite direct sum of the spaces L ’(R *) which is
unitarily equivalent to a dense set of functions in L %(R *).
Using (2.16) and (2.17), we get

(m*—z)e*"'”"f":f (e~ —mode” " fdd.  (2.18)
0
Now

- 1 s e
ner 5, _770: 2_iea,)\re "“(l—e 26.)

+ 3o g 0+ e )]

j=1

k N
+[ 3o e O+t 4o @19)
j=1

Noting that ¢, ; and p are O (r ~ />~ ) as r— o0, if we put
these terms into (2.18) we see the resulting function goes to
zero in L % as t— 0. If we put the first term on the right of
(2.19) and the terms involving ¢;” g;~ into (2.18) and inte-
grate by parts we see that this also goes to zero in the L > norm
as t— co. It remains to deal with the terms ¢,* g;*.

Let

h(s,t) =g (s) f ee =t (A) f(A)dA.

0

Then
P =o) ["ete i @rjGran ||

so that

fx |h(s,2)|? ds

r =o(1) Lw
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1/

L " ee e () f(A) dA ‘2 ds

=o(1)f let ) FA)|? dA.
0
Hence, independent of £ > 0,

f |h(s,t)|*ds—0 as r—c.

r

Using the Riemann~Lebesque lemma, this implies

f |h(s,t)|?ds—0 as t—oo.

0

We are now in a position to get the estimate (2.2) of
Lemma 2.1. As we noted before, we will be working with
operators which are unitarily equivalent to 2 ;~, Hyand H ',
but we shall not change our notation.

For simplicity, let us replace the coefficients of
exp( 4 iAr) in Formula (2.10) by ¢ * (r,A ). Then from (2.16)
and (2.17) we get

Ne ilHa(Ho + 0 f()

= F n(rAd e P Pe A2+ i) F(A) dA
_ re-"WW')[c—(r,,t)—1/2f]e-f5‘<*>(,12+z)fd,1
+ Jm ei(/lrflzr)[ch(r/{)_+_1/2i]eAi<5.(/1)(A2+l’)j’d/{

+ Jw e~ " p(rA)e T MDA+ 1) fdA.
0

The first integral may be integrated by parts twice and in so
doing we find itis O (| + ¢ | ~ ). If supp/C [, « ), then inte-
grating the second integral by parts twice shows that it is
O (|r —2ar | ~?). An integration by parts twice of the third
integral shows that itis O (r ~'/>~ < ~?). Hence we see that

|F(x| <a|t )2 e " (Hy+ D) fleL '(R,dt).

The remainder of the paper will be devoted to the fol-
lowing proof.

Proof of Lemma 2.2: Let us suppose, at first, that

2B + a>2 and a>1. The differential equation (2.9) can be
put in the matrix form

0 1
T\ +wr =470

where V, (r) = ar ~# sinbr”. The term v(/,n)/r” and its de-
rivatives decrease fast enough at infinity so that it plays no
essential role in the computations which follow. Hence, for
the sake of simplicity, we will drop it. Our computations will
proceed very much like the computations in Ref. 4. In some
aspects they are considerably easier since it is not necessary
here to deal with complex values of 4. On the other hand, we
are asking for more precise information so that we must pay
a little closer attention to some of the estimates. We take this
opportunity to note that the asymptotic estimates of Lemma
3.1 of Ref. 4 must be modified for those @ and S wherea < 1,
and a + <1 or B<). However, all of the conclusions of the
paper remain valid except that we do not get the existence of
the wave operator for all of the values of ¢ and S8 that we
claim, when a < 1 (see Ref. 9).

u' u, (2.20)
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Let us set
1 1 ]
P= [ A —id
and let # = Pw. The Eq. (2.20) is transformed to
w = A+ Ww, 2.21)
where
Vo . ‘
W= ’2; [ 11 11 ] A = diag[id, — iA |.
2.22)
Next, let us set
0 g,2(rA) ]
rA)= [ ,
o« g, (rA) 0

where Q is continuously differentiable in r and Q (r,4 }>0as
r— oo . If we make the transformation w = ( + Q)y, Eq.
(2.21) is transformed (for large r) to

y=UAU+TY)y,
where I+ Q)Y =AQ - QA+ W+ WQ - Q"
We choose Q so that

Q' =AQ — QA + W — diagW.
This leads to the differential equations

g2 (rA) = 2iAq,(rA) — iV, /24,

g (rA) = —2idqy(rA) + iV, /24

Solutions to these equations are given by

(2.23)
(2.24)

2.25)

P2 ) = (i/20)e j " ey, (9 ds,
’ (2.26)
gt )= — (/24 )e =2 f eV, (s) ds.

r

In the expression for ¥, replace sinb#* by sum of expon-
entials. For any real number , no matter how large, succes-
sive integration by parts of the integrals in (2.26) shows that
¢ and ¢,, can be written as a sum of functions of the form

(eiibf“/r"*'s‘])ci(/l)h i(r‘) and h(rjv)r (2.27)

where ¢ ¥ (4 ) are infinitely differentiable, each 4 * () is of
the form

h*(@) =1/, some €>0,
hrA)y=0Q/r),
Fh(rAYOAk = 0(1/r ).

(2.28)

If@ = 1and A * = b /4 we cannot integrate by parts to get
the functions (2.27) so that in this case |b |/2 is one of the
exceptional points in R *. From (2.27) and (2.28) we see
that as 7— o, and for O0<k<m,

QIO =0/ +P ), (2.29)

If in Eq. (2.23) we take Y = diag + Y,, then Eq.
(2.23) takes the form

V' =+ Yo, (2.30)
where A, = A + diagW, and
I+ Q)Y,= — QdiagW + WQ. .31

2409 J. Math. Phys., Vol. 21, No. 9, September 1980

If we note that Wand W /94 % are O (r —#) as r— w0, then
differentiations of (2.31) with respect to A and the estimates
(2.29) show that as r— o, and for 0<&k<m,

FY Ik =O0(1/PE+e~1y, (2.32)
Moreover, if we operate on (2.31) by (7 + Q) ~ ', and expand

this in a power series in @, then from the form (2.27) of Q we
see that the components of Y, are of the form

(et /PErea=Nex (Ah F(r) and hy(rd), (2.33)

where & runs over a finite set of nonnegative integers, the
¢ (A) are infinitely differentiable, and the # £ (r) and
h(r,A) satisfy (2.28) for some sufficiently large y.

We now transform the differential equation (2.30) by a
transformation y = (I + Q,)y,, where we take the compo-

nents ¢{1 = ¢¥ = 0, and, for 7>#,> 0, r, sufficiently large,

grA)= — eXP(2 fﬂ *)

X f exp(——Zfﬂ*)[Yo—diagYo]lzd&
’ " (2.34)
gP(rA) = — CXP(Z j!‘ _)

X f exp(—2 J,Lﬁ)[YO — diag¥,],, ds,

where A, = diag[u * ,u ~ ]. Note that the integrals in (2.34)
converge since the integrands are O (1/7°? **~ ') and we are
supposing 28 + a > 2.

Noting the form (2.33) of the components of Y, if we
integrate the integrals in (2.34) successively by parts we find
that ¢! and ¢} can be written as sums of functions of the
form (2.33), where again (2.28) is valid. If @ = | we must
exclude a finite number of points A from R * in order to get
functions of the form (2.33). We note that since the function
ho(r,A ) of (2.33) has a very high rate of decrease at infinity, it
is not necessary to integrate by parts any term involving 4, as
a multiple in order to get functions of the form (2.33).

From (2.33) and the estimates (2.28) we see that as
r— and for 0<k<m

0*Q/O A =01/PF+ e, 2.35)
The differential equation (2.30) transforms to

Vi =A@+ diag¥o+ Yy, = (A, + Yy, (2.36)
where

U+ Q)Y = — @0, diag¥, + Y, Q,. (2.37)
If we proceed as before we find that for O<k<m

Y, /A =01 /P +a—D) (2.38)

and the components of Y, are sums of functions of the form
(e /PP ra—Nex(AYa E(r) and hy(r,d),
(2.39)

where the ¢ are infinitely differentiable and the 4 & (#) and
ho(r,A ) satisfy (2.28).

We proceed by induction. At the mth stage we have a
differential equation

Voo =A, + Y, 0, (2.40)
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where

A, =A+diagh+ S diag, , (2.41)
k=0

and

+Q,)Y,=—0Q,diagY¥,, _, +Y,, Q..

For 0<k<m, and for r— o we get

3*Q,, /A% =0 (1/P¢m ~ DB+ a—Dy 2.42)
and

Y, /oA = O (1/Pm@B+a=D), (2.43)

Further, the components of Y, are of the form

(et *h/pmEB+e=Dyet (AYVh F(r) and hy(rA).
(2.44)
Let diagY; = diag[u,* u; ], 0<j<m — 1. From (2.32)

and (2.43) and the fact that 28 + a —1 > 1, we see that

[ 1< e
,

where 7, is sufficiently large so that u;* (r,4 ) is defined for
r>r,. Let diagA,, = diag[v " ,v~ ]. Since diag[A + W]is

purely imaginary, we have
expj v* i< maxexpf It | =M< .
’ J "
(2.45)

We now use Levinson’s method to get certain solutions
to the differential equation (2.40), together with asymptotic
estimates. Choose r,>r, sufficiently large so that for all A/

max sup

rer

f |Y,,(rA) | dr<1/2M2. (2.46)

We are taking the norm of a matrix as the maximum of the
absolute values of its entries. Let B be the space of all func-
tions £ (r,4 ), continuous on [#,, o0 ) X I so that 3*f /94 * exist
and are continuous on [#y, oo ) X I for 1<k<m, and

1A |
rooaAk
Under this norm, B is a Banach space.

Let 7:B— B be the bounded operator given by

TNHrid)y= — fw (AW EA) Y, (5A) f(sA)dA,
' (2.47)

m

[fll=" % sup

K=o Trme) X1

where
Y(rA)= diag[expf v, epr‘ v ]

From (2.45)itis clear that | ¥ (r,A )| and |¥ (5,4 ) ~'| areboth
bounded by M on [#,, ) X I. Thus, from (2.46) and (2.47) it
follows that ||\I" || <1.

From the form of v* and v —, and the estimates (2.32)
and (2.43), it is clear that as r— 0

v Fw

R
Because of the estimate (2.43) on Y, and its derivatives with
respect to A, I'f can be differentiated m times under the inte-
gral sign.

=0¢"), 1<k<m.
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Let ¢ and ¢~ be the first and second columns of ¥
respectively. Clearly ¥ and ¢~ belong to B. Set

yr=I-r)y'v*,
so that

Vo =y¢* +Ty,;. (2.48)

The functions y, satisfy the differential equation (2.40). If
we transform back to get solutions of the differential equa-
tion (2.21), we have

w* =9+ + [0+ U+ Q)0+ + )T+ Q)D>
+1Yt T+ QT+ Q)T+ Q)
=¢i +Ci¢i +R i‘
From the estimates (2.29), (2.36), and (2.42) on Q,0Q,,...,0,..
it is clear that for a> 1, 28 + a > 2, as r— w0, and for
O<k<m,
FC/AA =00/ P D=0/ "9.  (2.50)
Further, sincey, €B, 3%y, /04 * = O (#*),0<k<m, as r—wo.

Hence from the integral expression for I'y,- and the rate of
decrease of Y, it is clear that as »— 0, and for O<k<m

R =/3A % =0 (1/r72+9, (2.51)

Let diag[W + 27} Y, | = diag[w * ,0 ~ ]. Since the
entries of diag W are conditionally integrable and the entries
of diag2 Y, are absolutely integrable we may write

epr ot =cexp(— f wi).

Thus we may write

1/,t:ei"’“exp<Ja)i)pi
:cei“’exp(—f a)i)pi
=ce*"p, +[CXP(_f wi)—l}eiihpi’

wherep, =(1,0),p_ = (0,1).

From the form of the components of the Y, [see (2.44)]
it follows that [exp( — f*® *) — 1 ] can be written as a sum
of terms

S (g () + ety (hA),

as in (ii) of Lemma 2.2. If we now transform by P and take
the components of u, then we see we have solutions of (2.9)
which satisfy the conditions of Lemma 2.2, at least for r>r,,.
However, it is clear that these solutions can be extended to
all of the positive axis. Thus Lemma 2.2 is proved for the case
a>1,2B +a>2.
Ifa<1,a+B>1and B>}, we proceed, at the initial

stages, in a slightly different way. Let

u(rA)y=i[A2— v, (0]
and let us set

(2.49)

1 1
P r ,A = [ s
=1y —urd)
and ¥ = Pw. Then the differential equation (2.20) is trans-

Allen Devinatz 2410



formed to
w =+ W,
where A = diag[u, — ], and

T Cilve(3)
W= —1- +0| =}
2 u 1 —1 7
The proof now proceeds as before with the exception that
'/ replaces V, in the computations. However, Levinson’s
technique now leads to solutions which are asymptotic to

exp( £ [ p), rather than exp( & idr). If we expand
(A2 — ¥,)"?into a series we see we may write

f = iAr 4 4A),

2411 J. Math. Phys., Vol. 21, No. 9, September 1980

where y(r,A ) converges to a finite number as 7— o only if
a + > 1and B> L. This leads to the expansion (ii) in
Lemma 2.2. Thus we shall consider Lemma 2.2 as proved.
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Properties of a covering space defined by Hawking
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We investigate the topological properties of a covering space introduced by Hawking in 1967 to

assist in his derivation of some singularity theorems.

1. INTRODUCTION

Let (M,g) be a Lorentzian manifold and let S be aslice in
(M.g), i.e., a closed, connected, regu]ar,,vl codimension one
spacelike submanifold of M. Hawking® has defined a cover-
ing manifold M, of M with projection 7 and claims that M,
is the largest covering manifold of M with the property that
each component of the preimage of S is homeomorphic to S
(see also p. 205 of Ref. 3). This claim is incorrect. In the next
section we show that M, is the largest covering manifold of
M with the property that there exists at least one component
of the preimage of S which is homeomorphic to S.

A slice N in a Lorentzian manifold (M,g) is called a
partial Cauchy surface in (M,g) if every nonspacelike curve
of class C ' meets N in at most one point.

In the third section we show that if S is a slice in a time
orientable spacetime (M,g), then each component of the
preimage of S in the covering space M,, is a partial Cauchy
surface in the spacetime (M,,,7*g).

Due to the aforementioned results we shall be able to
conclude that if S is a slice in a time orientable Lorentzian
manifold (M,g), then there exists a covering space of (3,g)
which admits a partial Cauchy surface which is homeomor-
phic to S. Consequently, Hawking’s minor oversight con-
cerning some of the properties of M, will not affect his appli-
cations of M in the proofs of various singularity
theorems.

2. DEFINITION OF M, AND SOME OF ITS
TOPOLOGICAL PROPERTIES

In order to define M, and establish some of its proper-
ties we do not require M to be a differentable manifold. Thus
throughout this section we assume that M is a Hausdorff,
connected, locally arcwise connected, and locally simply
connected* topological space, and .S is a connected, locally
arcwise connected subspace of M.

Following Hawking,” we define M,: = {(p, [A ])|peM
and [A4 } is an equivalence class of paths in M from S to p
homotopic modulo S and p}. If ( p, [A ))eM, and V'is a sim-
ply connected neighborhood of p we define
V(p,[A)): = {(g,[A-a])|geV and «a is the unique (up to a ho-
motopy) path class in ¥ from p to ¢}. The totality of sets
V ( p,[A]) defines a basis for a topology on M, in terms of
which M,, is a Hausdorff, arcwise connected, and locally
arcwise connected topological space. Let 7:M;,—M be de-
fined by ( p,[A ])—p. It is easily seen that M,, is a covering
space’ of M with projection 7. An important property of M,
is presented in

Proposition 2.1: If s€S and §: = (s,[e, )M, where e, is
the constant path, then 7, IT\(M}, ,5) = j, IT(S.5), where®
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J:5—>M is the natural injection and a lower star denotes the
induced homomorphism between fundamental groups.”

Proof: We first show that j, IT,(S,s5)Cr (M, 5).

Let §: —M (I: = [0,1]CR) be a loop starting at s and
having its range contained in S. For every ¢ with 0<z<1 we
define 8,: I--M by u—6(tu). 6 lifts to a map 5: 1M w given
by ¢ —»(5(t) [6,1). 8 will be a loop in M,, starting at § pro-
vided [6;] = [8,]. But § = 8, lies in S and so is “homotopic
modulo S and s to the constant loop &,. Thus Sisa loop in
M, starting at § and such that 705 = 8. Consequently,

Jo IL(S,5)Crr I1,(M} ,5). Now for the converse.

If @ (@(t) = (a(?), [A,]), is a loop in M, starting at §
then 7@ = a is a loop in M starting at s. Evidently & pro-
vides onellift of @ to M, starting at 5. A second lift of  to M,
starting at §is given by  —(a(¢), [a,]), where o, (4): = a(tu)
for every ¢ with 0<¢< 1. By the uniqueness of lifts starting at §
(cf., p. 151 of Ref. 5) we must have [4,] = [e, ] and so
[ao] = [Ao] = [41] = [a,] (Where, recall that, the homotopy
ismodulo §'and s). Thus a( = @,) must be homotopic modu-
lo §'and s to the constant path e,, and hence a is loop homo-
topic to a loop whose range lies in S. (The loop and loop
homotopy in question can be built using the homotopy from
e, to a modulo S and 5.) As a result 7, 11, (M,,,5)

Cj I(S.5). O

Our next proposition concerns the relationship between
S and its preimage in M,,.

Proposition 2.2: Let s€S and set §: = (s, e, ]). The path
component S of T: = 7~ '(S) which contains § is homeomor-
phicto Sunder . If A isapath from S to s such that [1 ]+ [e, ]
then the path component of X passing through (s,[4 ]) is the
total space of a T-sheeted covering space of S where 7 is the
nrumber of distinct homotopy classes of the form [A-a) where
is a loop in M which determines an element of j, I1,(S,s).

Proof: Let 2’ denote a path component of X and let 7'
denote the unique map which makes the following diagram
commutative:

=

2"(__']__>M

O VI

§ &—M.

@.1

It is well known that X'’ is a covering space of S with projec-
tion 7' (c.f. page 150 of Ref. 5). We shall now determine
when 7' is injective and hence a homeomorphism.

Suppose that & is a path in M,, which goes from (s,[u])
to (s,{v]) and has range contained in 2 ’. Upon projecting @ to
M with 7 we obtain a loop o in M at s whose range lies in S.
We lift a to the path t ~>(a(r ), [u-a,]), where a, (1): = a(tu)
for every ¢ with 0<z< 1. Due to the uniqueness of lifts of &
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starting at (s,[]) we must have &(1) = (a(1), [u-a,]) and
hence [u-a] = [v]. Thus 7' will be injective if and only if
[u-a] = [] for all loops a which determine elements of

7. 11,(S.5). Consequently, the path component S of £ which
contains (s, [¢, ]) is homeomorphic to S under 7. However, if
[l [e, ], then [u-a] need not equal [u] for all loops @. Thus
in this case the component 3 ’ of 3 passing through (s[z¢]) will
be a 7-sheeted covering space where 7 is the number of dis-
tinct homotopy classes of the form [u-a], where a is aloop in
M which determines an element of j, I1,(S.s). O

At this point one should note that the definition of §
given in Proposition 2.2 is actually independent of our choice
of seS; i.e., if { is some other point in S then (£, [eg ])€§

In general the covering space M, will be irregular (see
pages 163-164 of Ref. 5). However, in those instances for
which M, is regular we can use Proposition 2.2 to conclude
that each component of the preimage of S is homeomorphic
to S.

Propositions 2.1 and 2.2 essentially represent the es-
sence of the covering space M,,, in the sense that all of the
remaining results concerning M,, which we shall establish
require only those propeties of M, given in these
propositions.

The relationship between the fundamental groups of S

and M, is provided by

Proposition 2.3: If seS and §: = (s,[e, ])eM,, then
j*” SH=01 (M, 5), where S is the component of the prei-
mage of S which passes through § and j:S <>M -

Proof: Due to Eq. (2.1) with 3’ replaced by S we obtain
the following commutative diagram of groups and
homomorphisms

_ J -
(85 ——— (M)

Jx
11,(S,s) —— IT,(M,s).

It is apparent that ; _]* 1(.S‘,s‘)CII (M, ,8), and so we must
prove that I7,(M,,5)C _]*H (5,5). To that end let (&)
€ll, (M ,5). Due to Proposition 2.1 we know that there ex-

ists {(a)ell, (S,s) whichis such thatj, (a) = 7, (&). Since S’

is homeomorphic to S, 7, is an 1somorphlsm, and hence
there exists { B Yell, (S,s') for which 7, (8)
= (a). The commutativity of the above diagram and the

fact that 7, is a monomorphism (see p. 154 of Ref. 5) imply
thatj, (B) = (&). a

The above corollary will be employed in the next sec-
tion to show that if S is a slice in a time orientable spacetime
then each component of the preimage of S separates M,,.

The covering space 3, is uniquely characterized (up to
an isomorphism) by

Proposition 2.4: M, is the largest covering space of M
which is such that there exists one component of the preimage
of S which is homeomorphic to S under the covering map.

Proof: Let M be a covering space of M with projection #
which is such that there exists one component C of the prei-
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mage of § which is homeomorphic to S under #. In order to
prove the proposition we must show that M, is a covering
space of M. To show this it suffices® to demonstrate that
there exists a homomorphism from M, into M i.e., a con-
tinuous map p: M —M such that #op = 7. This will be the
case if 7 1T, (M §)C 7, IT, (M,s’), where s€S, §: = (s,[e, ])
and § is the unique pomt in C for which #(5) = s. However,
this is obvious since Proposition 2.1 tells us that 7, 1T, (M,,,
§) =j, II, (S,s) and C is homeomorphic to S under #. [

To illustrate the above theory we have the following

Example 2.1: Let M: = R*\ {(0,0),(2,0)} and let S de-
note the unit circle centered at (0,0) with subset topology.
Evidently M and S satisfy our topological assumptions. We
choose s = (1,0) and let A be the polygonal path from s to s
whose image consists of the three line segments joining the
points s, (3, —1), (3,1) and s. If we take a to be the loop in M
based at s, which traverses S counterclockwise one time then
the set {[A.a”]} .z (Z: = the set of integers) consists of dis-
tinct elements. Thus the component 3 ' of 7 ~' (') which con-
tains (s,[A ] as a countable infinity of sheets. It turns out that
3’ is homeomorphic to R, and the only path component of
7' (§) which is homeomorphic to S is the one which con-
tains (s, [e, ]).

In passing it should be noted that M admits many Lor-
entzian metrics in terms of which S is a slice—in fact, a
partial Cauchy surface. One such-metric is provided by
ds* = — dr* + r'd6* whererand @ are polar coordinates. O

This completes our brief study of some of the properties
of M, and the preimage of § in M;,, which can be estab-
lished under the mild topological restrictions imposed at the
outset of this section. In the next section we shall establish a
few more topological properties of M}, under the assump-
tion that.S'is a slice in a time orientable Lorentzian manifold.

3. PARTIAL CAUCHY SURFACES

In this section we shall confine our attention to an n-
dimensional Lorentzian manifold, L, = (M,g), where M is
assumed to be a connected Hausdorff, #-dimensional, C
manifold, and g is a class C° Lorentzian metric on M.

Let S'be a slice in the Lorentzian manifold L, = (M,g).
We make the covering space M, determined by M and Sinto
a connected, Hausdorff, n-dimensional, C = manifold by de-
manding that the covering projection 7: M,,—M be a local
diffeomorphism. In term of this manifold structure we find
that L, : = (M,,,7*g) is a Lorentzian manifold and each
component of the preimage of Sisaslicein L. If L, is time
orientable then sois L,,.

The primary purpose of this section is to prove

Theorem 3.1: If S is a slice in a time orientable Lorent-
zian manifold L, = (M.g) then each component of the prei-
mage of S in M, is a partial Cauchy surface in L, = (M,
T*g).

This result is an immediate consequence of the follow-
ing two propositions which are of interest in their own right.

Proposition 3.1: If S is a slice in a time orientable Lorent-
zian manifold L, = (M.g) which separates® M then S is a
partial Cauchy surface in M.

Proposition 3.2: IfSis a slice in a time orientable Lorent-
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zian manifold L, = (M,g), then each component of the prei-
mage of S in M, separates M, .

Remark: Proposition 3.1 seems to be known by many
relativists and is implicit in the work of Geroch'®; however,
we have not seen a published proof of this result. O

We shall now present the proofs of Propositions 3.1 and
3.2

Proof*' of Proposition 3.1: Since L, is time orientable
there exists a smooth, future pointing, timelike vector field Z
on M. Let @: DCR X M—M denote the flow of Z; i.e.,

D (t,p): = v,(t) where y, is the maximal integral curve of Z
starting at p. @ is a smooth function. We set 8: = @,(1 X)),
where 1:R—R is the identity map and j:S<>M. Evidently 8 1is
differentiable as a map from an open subset of R X .S into M,
and it can be shown that since S is a regular submanifold of
M there exists a connected neighborhood U of {0} X.S in

R x Swhichissuchthat UC dom®,8 |, is a diffeomorphism,
and {0} XS is a deformation retract'? of U.

Since S separates M, M \.S consists of two (connected)
components each of which has § as its topological boundary
in M (seep. 107 of Ref. 13). Clearly 8 (U )isaneighborhood of
S'in M and hence & (U) meets each component of M \ S. Let
Ut:={(@p)eU|t>0}andU ~: = (tp)eU|t<0}.U * and
U ~ areconnected and (U *)and 8(U ~ ) must lie in differ-
ent components of M \S. Welet C * (C —,resp.)denote the
component of M \ .S which contains 8(U *) (6(U ~), resp.).

Employing the diffeomorphism & we can show that if
s<§ then there exists a chart (W,x) of M at s with connected
domain W which is such that:**

(@) SnW = {peW |x°(p) = 0};

(ii) if x°( p) > O,then peW *: = WnC *;

(iii) if x°( p) <O, then peW ~: = WnC —;

. d

(v)Z = paC on W.

The chart (W,x) is said to be adapted to Z at s.

Let c: JCR—M be a nonspacelike curve. ¢ is either past
pointing or future pointing. Without loss of generality we
may assume that ¢ is future pointing. Suppose that ¢ ~'(S)
contains at least two points, a, and a,, with @, <a,. We set
k: = ¢| (4,4, ), and claim that k ~'(S) is a finite set. This fol-
lows trivially from the fact that ¢ is transverse to S; however,
we proceed directly. Let ack ~'(S) and set s: = k (@). If
(W,x)is a chart of M at s which is adapted to Z then we have

_dc

-

N
where ¢": = x'oc, and ¢ is the standard chart on R. Since ¢(a)
is future pointing, we must have dc®/dt|, > 0, and hence ¢ is
strictly increasing on a neighborhood of a. Thus there exists
6cR * which is such that c(( — 8 + a,@))CW ~ CC ~ and
c((a,a + 8))CW * CC *. Consequently we can separate
eachelement of k¢ ~'(S') by disjoint open sets. Since the inter-
val [a,,a,] is compact we can now conclude that the set k !
(S) is finite.

The above work shows that if ¢ ~'(S) contains at least
two points then we can choose a,,a,6c ~'(S), witha, <a,, s0
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that k: = ¢|, , ,is such that k ~'(S) = {a,,a,}. Let (W,x)
and (V,y) bechartsof M ats,: = ¢(a,) and s,: = c(a,), respec-
tively, which are adapted to Z. By the previous argument
there exists b,,b,€R, such that a, < b, < b, <a,, c(b)eW *
CC *,and c(b,)eV —~ CC ~. We now have the contradic-
tion that ¢}, ,, | is a continuous curve lying in M \S and
joining points in different components of M \ S. This contra-
diction implies that if ¢ is a nonspacelike curve then ¢ ~'(S)
can contain at most one point and hence S'is a partial Cauchy
surface. g

Our proof of Proposition 3.2 will proceed by means of
three lemmas. We begin with the following definition: a sub-
manifold N of a manifold M will be said to be two-sided in M
if N is a regular, connected, codimension one submanifold of
M and there exists a smooth vector field defined on a neigh-
borhood of N and